(理)已知圓F的方程是x2+y2-2y=0,拋物線(xiàn)的頂點(diǎn)在原點(diǎn),焦點(diǎn)是圓心F,過(guò)F作傾斜角為a的直線(xiàn)l,l與拋物線(xiàn)和圓依次交于A(yíng)、B、C、D四點(diǎn)(在直線(xiàn)z上,這四個(gè)點(diǎn)從左至右依次為A、B、C、D),若|AB|,|BC|,|CD|成等差數(shù)列,則α的值為(    )

A.+arctan                                  B.

C.a(chǎn)rctan                                   D.a(chǎn)rctan或π-arctan

答案:(理)D  圓半徑為1,拋物線(xiàn)方程為x2=4y,

由AB+CD=2BC=4,

∴AF-1+DF-1=4,AF+DF=6

即(yA+1)+(yB+1)=6,∴yA+yB=4

設(shè)直線(xiàn)方程為y=kx+1.

代入x2=4y中得到y(tǒng)2-(2+4k2)y+1=0,

yA+yB=2+4k2=4,k=±

∴α=arctan或π-aretan

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)精英家教網(wǎng)(理)已知函數(shù)f(x)=
ln(2-x2)
|x+2|-2

(1)試判斷f(x)的奇偶性并給予證明;
(2)求證:f(x)在區(qū)間(0,1)單調(diào)遞減;
(3)如圖給出的是與函數(shù)f(x)相關(guān)的一個(gè)程序框圖,試構(gòu)造一個(gè)公差不為零的等差數(shù)列
{an},使得該程序能正常運(yùn)行且輸出的結(jié)果恰好為0.請(qǐng)說(shuō)明你的理由.
(文)如圖,在平面直角坐標(biāo)系中,方程為x2+y2+Dx+Ey+F=0的圓M的內(nèi)接四邊形ABCD的對(duì)角線(xiàn)AC和BD互相垂直,且AC和BD分別在x軸和y軸上.
(1)求證:F<0;
(2)若四邊形ABCD的面積為8,對(duì)角線(xiàn)AC的長(zhǎng)為2,且
AB
AD
=0
,求D2+E2-4F的值;
(3)設(shè)四邊形ABCD的一條邊CD的中點(diǎn)為G,OH⊥AB且垂足為H.試用平面解析幾何的研究方法判
斷點(diǎn)O、G、H是否共線(xiàn),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(09年臨沂一模理)(12分)

已知點(diǎn)M在橢圓(a>b>0)上,以M為圓心的圓與x軸相切于橢圓的右焦點(diǎn)F。

(1)若圓M與y軸相交于A(yíng)、B兩點(diǎn),且△ABM是邊長(zhǎng)為2的正三角形,求橢圓的方程;

(2)若點(diǎn)F(1,0),設(shè)過(guò)點(diǎn)F的直線(xiàn)l交橢圓于C、D兩點(diǎn),若直線(xiàn)l繞點(diǎn)F任意轉(zhuǎn)動(dòng)時(shí)恒有|OC|2+|OD|2<|CD|2,求a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(06年福建卷理)(12分)

已知橢圓的左焦點(diǎn)為F,O為坐標(biāo)原點(diǎn)。

       (I)求過(guò)點(diǎn)O、F,并且與橢圓的左準(zhǔn)線(xiàn)相切的圓的方程;

       (II)設(shè)過(guò)點(diǎn)F且不與坐標(biāo)軸垂直的直線(xiàn)交橢圓于A(yíng)、B兩點(diǎn),線(xiàn)段AB的垂直平分線(xiàn)與軸交于點(diǎn)G,求點(diǎn)G橫坐標(biāo)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年上海市普陀區(qū)高考數(shù)學(xué)二模試卷(文理合卷)(解析版) 題型:解答題

(理)已知函數(shù)
(1)試判斷f(x)的奇偶性并給予證明;
(2)求證:f(x)在區(qū)間(0,1)單調(diào)遞減;
(3)如圖給出的是與函數(shù)f(x)相關(guān)的一個(gè)程序框圖,試構(gòu)造一個(gè)公差不為零的等差數(shù)列
{an},使得該程序能正常運(yùn)行且輸出的結(jié)果恰好為0.請(qǐng)說(shuō)明你的理由.
(文)如圖,在平面直角坐標(biāo)系中,方程為x2+y2+Dx+Ey+F=0的圓M的內(nèi)接四邊形ABCD的對(duì)角線(xiàn)AC和BD互相垂直,且AC和BD分別在x軸和y軸上.
(1)求證:F<0;
(2)若四邊形ABCD的面積為8,對(duì)角線(xiàn)AC的長(zhǎng)為2,且,求D2+E2-4F的值;
(3)設(shè)四邊形ABCD的一條邊CD的中點(diǎn)為G,OH⊥AB且垂足為H.試用平面解析幾何的研究方法判
斷點(diǎn)O、G、H是否共線(xiàn),并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案