【題目】下列命題正確的是( )

A. 命題的否定是:

B. 命題中,若,則的否命題是真命題

C. 如果為真命題,為假命題,則為真命題,為假命題

D. 是函數(shù)的最小正周期為的充分不必要條件

【答案】D

【解析】

在A中,命題的否定是:;在B中,命題中,若,則的否命題是假命題;在C中,中一個(gè)是假命題,另一個(gè)是真命題;在D中,,從而是函數(shù)的最小正周期為的充分不必要條件.

在A中,命題的否定是:,故A錯(cuò)誤;
在B中,命題中,若,則的否命題是假命題,故B錯(cuò)誤;
在C中,如果為真命題,為假命題,則中一個(gè)是假命題,另一個(gè)是真命題,故C錯(cuò)誤;
在D中,∴ω=1函數(shù)f(x)=sinωx-cosωx的最小正周期為2π,
函數(shù)f(x)=sinωx-cosωx的最小正周期為2πω=±1.
是函數(shù)的最小正周期為的充分不必要條件,故D正確.
故選:D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù)(其中).

(1)當(dāng)時(shí),求不等式的解集;

(2)若關(guān)于的不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知直線2xy﹣1=0與直線x﹣2y+1=0交于點(diǎn)P

求過點(diǎn)P且平行于直線3x+4y﹣15=0的直線的方程;(結(jié)果寫成直線方程的一般式)

求過點(diǎn)P并且在兩坐標(biāo)軸上截距相等的直線方程(結(jié)果寫成直線方程的一般式)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形中,,,分別在,上,,現(xiàn)將四邊形沿折起,使平面平面.

(Ⅰ)若,在折疊后的線段上是否存在一點(diǎn),且,使得平面?若存在,求出的值;若不存在,說明理由;

(Ⅱ)當(dāng)三棱錐的體積最大時(shí),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018101日起,中華人民共和國個(gè)人所得稅新規(guī)定,公民月工資、薪金所得不超過5000元的部分不必納稅,超過5000元的部分為全月應(yīng)納稅所得額,此項(xiàng)稅款按下表分段累計(jì)計(jì)算:

全月應(yīng)納稅所得額

稅率

不超過1500元的部分

3

超過1500元不超過4500元的部分

10

超過4500元不超過9000元的部分

20

超過9000元不超過35000

25

如果小李10月份全月的工資、薪金為7000元,那么他應(yīng)該納稅多少元?

如果小張10月份交納稅金425元,那么他10月份的工資、薪金是多少元?

寫出工資、薪金收入與應(yīng)繳納稅金的函數(shù)關(guān)系式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)求經(jīng)過點(diǎn)P(4,1),且在兩坐標(biāo)軸上的截距相等的直線方程.

(2)設(shè)直線yx2a與圓Cx2y22ay20相交于A,B兩點(diǎn),若|AB|2,求圓C的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在幾何體中,四邊形是邊長為的正方形,且平面,,且,與平面所成角的正切值為.

(1)求證:平面平面

(2)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)對(duì)一塊長米,寬米的矩形場地ABCD進(jìn)行改造,點(diǎn)E為線段BC的中點(diǎn),點(diǎn)F在線段CDAD上(異于A,C),設(shè)(單位:米),的面積記為(單位:平方米),其余部分面積記為(單位:平方米).

1)求函數(shù)的解析式;

2)設(shè)該場地中部分的改造費(fèi)用為(單位:萬元),其余部分的改造費(fèi)用為(單位:萬元),記總的改造費(fèi)用為W單位:萬元),求W最小值,并求取最小值時(shí)x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2017高考特別強(qiáng)調(diào)了要增加對(duì)數(shù)學(xué)文化的考查,為此某校高三年級(jí)特命制了一套與數(shù)學(xué)文化有關(guān)的專題訓(xùn)練卷(文、理科試卷滿分均為100分),并對(duì)整個(gè)高三年級(jí)的學(xué)生進(jìn)行了測試.現(xiàn)從這些學(xué)生中隨機(jī)抽取了50名學(xué)生的成績,按照成績?yōu)?/span> ,…, 分成了5組,制成了如圖所示的頻率分布直方圖(假定每名學(xué)生的成績均不低于50分).

(1)求頻率分布直方圖中的的值,并估計(jì)所抽取的50名學(xué)生成績的平均數(shù)、中位數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表);

(2)若高三年級(jí)共有2000名學(xué)生,試估計(jì)高三學(xué)生中這次測試成績不低于70分的人數(shù);

(3)若在樣本中,利用分層抽樣的方法從成績不低于70分的三組學(xué)生中抽取6人,再從這6人中隨機(jī)抽取3人參加這次考試的考后分析會(huì),試求兩組中至少有1人被抽到的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案