【題目】已知函數(shù)f(x)=是奇函數(shù),且f(2)=.

(1)求實數(shù)mn的值;

(2)判斷函數(shù)f(x)在(-∞,0)上的單調性,并加以證明.

【答案】(1)實數(shù)mn的值分別是2和0(2)在(-∞,-1]上為增函數(shù),在(-1,0)上為減函數(shù).

【解析】試題分析:(1)先根據(jù)奇函數(shù)定義得f(-x)=-f(x),解得n=0.再由f(2)=m=2,(2)利用單調性定義,先作差,因式分解變形成因子形式,再根據(jù)各因子符號確定差的符號,最后根據(jù)符號關系確定單調性

試題解析:解:(1)∵f(x)是奇函數(shù),

f(-x)=-f(x),

=-.

比較得n=-n,則n=0.

又∵f(2)=,

,

解得m=2,故實數(shù)mn的值分別是2和0.

(2)函數(shù)f(x)在(-∞,-1]上為增函數(shù),在(-1,0)上為減函數(shù).

證明如下:由(1)可知f(x)=.

x1<x2<0,

f(x1)-f(x2)= (x1x2)

(x1x2.

x1<x2≤-1時,x1x2<0,x1x2>0,x1x2-1>0,

f(x1)-f(x2)<0,

f(x1)<f(x2).

故函數(shù)f(x)在(-∞,-1]上為增函數(shù);

當-1<x1<x2<0時,

x1x2<0,x1x2>0,x1x2-1<0.

f(x1)-f(x2)>0,即f(x1)>f(x2).

故函數(shù)f(x)在(-1,0)上為減函數(shù).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

)若恒成立,求的取值范圍;

)設,,(為自然對數(shù)的底數(shù)).是否存在常數(shù),使恒成立,若存在,求出的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列{an}滿足a22,a58

1)求{an}的通項公式;

2)各項均為正數(shù)的等比數(shù)列{bn}中,b11,b2b3a4,求{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】A={x|x2-2x=0},B={x|x2-2axa2a=0}.

(1)若ABB,求a的取值范圍;

(2)若ABB,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《中華人民共和國個人所得稅》規(guī)定,公民月工資、薪金所得不超過3500元的部分不納稅,超過3500元的部分為全月納稅所得額,此項稅款按下表分段累計計算:

已知張先生的月工資、薪金所得為10000元,問他當月應繳納多少個人所得稅?

設王先生的月工資、薪金所得為元,當月應繳納個人所得稅為元,寫出的函數(shù)關系式;

(3)已知王先生一月份應繳納個人所得稅為303元,那么他當月的個工資、薪金所得為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)生產的某種產品被檢測出其中一項質量指標存在問題.該企業(yè)為了檢查生產該產品的甲,乙兩條流水線的生產情況,隨機地從這兩條流水線上生產的大量產品中各抽取50件產品作為樣本,測出它們的這一項質量指標值.若該項質量指標值落在內,則為合格品,否則為不合格品.表1是甲流水線樣本的頻數(shù)分布表,圖1是乙流水線樣本的頻率分布直方圖.

(Ⅰ)根據(jù)圖1,估計乙流水線生產產品該質量指標值的中位數(shù);

(Ⅱ)若將頻率視為概率,某個月內甲,乙兩條流水線均生產了5000件產品,則甲,乙兩條流水線分別生產出不合格品約多少件?

(Ⅲ)根據(jù)已知條件完成下面列聯(lián)表,并回答是否有85%的把握認為該企業(yè)生產的這種產品的質量指標值與甲,乙兩條流水線的選擇有關

甲生產線

乙生產線

合計

合格品

不合格品

合計

附:(其中為樣本容量)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知如圖,圓、橢圓均經(jīng)過點M,圓的圓心為,橢圓的兩焦點分別為.

(Ⅰ)分別求圓和橢圓的標準方程;

(Ⅱ)過作直線與圓交于、兩點,試探究是否為定值?若是定值,求出該定值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國古代數(shù)學家劉徽是公元三世紀世界上最杰出的數(shù)學家,他在《九章算術圓田術》注中,用割圓術證明了圓面積的精確公式,并給出了計算圓周率的科學方法.所謂“割圓術”,即通過圓內接正多邊形細割圓,并使正多邊形的周長無限接近圓的周長,進而來求得較為精確的圓周率(圓周率指圓周長與該圓直徑的比率).劉徽計算圓周率是從正六邊形開始的,易知圓的內接正六邊形可分為六個全等的正三角形,每個三角形的邊長均為圓的半徑

,此時圓內接正六邊形的周長為

,此時若將圓內接正六邊形的周長等同于圓的周長,可得圓周率為3,當用正二十四邊形內接于圓時,按照上述算法,可得圓周率為__________.(參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)若函數(shù)有零點,求實數(shù)的取值范圍;

(2)證明:當時,

查看答案和解析>>

同步練習冊答案