已知函數(shù).
(1)若是函數(shù)的極值點(diǎn),求的值;
(2)求函數(shù)的單調(diào)區(qū)間.
(1);(2)當(dāng)時,函數(shù)的單調(diào)遞增區(qū)間為;當(dāng)時,函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是。
【解析】
試題分析:(1)先求函數(shù)的定義域,然后求導(dǎo)數(shù),根據(jù)“若是函數(shù)的極值點(diǎn),則是導(dǎo)數(shù)的零點(diǎn)”;(2)利用導(dǎo)數(shù)的正負(fù)分析原函數(shù)的單調(diào)性,按照列表分析.
試題解析:(1)函數(shù)定義域?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2013122310165655785780/SYS201312231020163401264629_DA.files/image004.png">, 2分
因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2013122310165655785780/SYS201312231020163401264629_DA.files/image008.png">是函數(shù)的極值點(diǎn),所以
解得或 4分
經(jīng)檢驗(yàn),或時,是函數(shù)的極值點(diǎn),
又因?yàn)閍>0所以 6分
(2)若,
所以函數(shù)的單調(diào)遞增區(qū)間為;
若,令,解得
當(dāng)時,的變化情況如下表
- |
0 |
+ |
|
極大值 |
所以函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是
考點(diǎn):1.導(dǎo)數(shù)公式3.函數(shù)極值;3.函數(shù)的單調(diào)性.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014屆江西省高三第三次月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù):
(1)若函數(shù)在區(qū)間上存在零點(diǎn),求實(shí)數(shù)的取值范圍;
(2)問:是否存在常數(shù),當(dāng)時,的值域?yàn)閰^(qū)間,且的長度為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年重慶市高二上學(xué)期期中考試?yán)砜茢?shù)學(xué)卷 題型:解答題
(本小題滿分12分)
已知函數(shù),
(1) 若,,且的定義域是[– 1,1],P(x1,y1),Q(x2,y2)是其圖象上任意兩點(diǎn)(),設(shè)直線PQ的斜率為k,求證:;
(2) 若,且的定義域是,.
求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年山東省高二下學(xué)期期末考試?yán)砜茢?shù)學(xué)卷 題型:解答題
(滿分14分)已知函數(shù).
(1)若,求a的取值范圍;
(2)證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:重慶市2009-2010學(xué)年度下期期末考試高二數(shù)學(xué)試題(文科) 題型:解答題
1. (本小題滿分13分)
已知函數(shù).
(1) 若在x = 0處取得極值為 – 2,求a、b的值;
(2) 若在上是增函數(shù),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com