【題目】設(shè)為拋物線的焦點(diǎn),過點(diǎn)的直線與拋物線相交于、兩點(diǎn).
(1)若,求此時直線的方程;
(2)若與直線垂直的直線過點(diǎn),且與拋物線相交于點(diǎn)、,設(shè)線段、的中點(diǎn)分別為、,如圖,求證:直線過定點(diǎn);
(3)設(shè)拋物線上的點(diǎn)、在其準(zhǔn)線上的射影分別為、,若△的面積是△的面積的兩倍,如圖,求線段中點(diǎn)的軌跡方程.
【答案】(1);(2);(3)
【解析】
(1)求出拋物線的焦點(diǎn)坐標(biāo),由直線方程的點(diǎn)斜式寫出直線l的方程,和拋物線方程聯(lián)立后利用2得直線方程.
(2由(1)得點(diǎn)P,又直線與直線垂直,將m換為,同理可得Q(,﹣).由此可求直線PQ的方程,可得結(jié)論;
(3)利用△的面積是△的面積的兩倍,求出N的坐標(biāo),再利用直線的斜率公式及點(diǎn)差法求TS中點(diǎn)的軌跡方程.
(1)拋物線焦點(diǎn)坐標(biāo)為F(1,0),設(shè)直線方程為x=my+1,
設(shè)點(diǎn)A(x1,y1),B(x2,y2),
聯(lián)立,得:y2﹣4my﹣4=0,
則由韋達(dá)定理有:y1+y2=4m,①,y1y2=﹣4,②
∵2,
∴1﹣x1=2(x2﹣1),﹣y1=2y2,③,
由①②③可得m2,∴,
∴直線方程為x=y+1,即.
(2)由(1)得點(diǎn)P,又直線與直線垂直,將m換為,
同理可得Q(,﹣).
m時,直線PQ的斜率kPQ,
直線PQ的方程為:y-2m(x﹣1﹣2),整理為m(x﹣3)﹣(m2﹣1)y=0,于是直線PQ恒過定點(diǎn)E(3,0),
m=±1時,直線PQ的方程為:x=3,也經(jīng)過點(diǎn)E(3,0).
綜上所述:直線PQ恒過定點(diǎn)E(3,0).
(3)設(shè)S(x1,y1),T(x2,y2),
F(1,0),準(zhǔn)線為 x=﹣1,2||=|y1﹣y2|,
設(shè)直線TS與x軸交點(diǎn)為N,
∴S△TSF|FN||y1﹣y2|,
∵的面積是△TSF的面積的兩倍,
∴|FN|=,∴|FN|=1,
∴xN=2,即N(2,0).
設(shè)TS中點(diǎn)為M(x,y),由span>得﹣=4(x1﹣x2),
又,
∴,即y2=2x﹣4.
∴TS中點(diǎn)軌跡方程為y2=2x﹣4.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)絡(luò)平臺從購買該平臺某課程的客戶中,隨機(jī)抽取了100位客戶的數(shù)據(jù),并將這100個數(shù)據(jù)按學(xué)時數(shù),客戶性別等進(jìn)行統(tǒng)計(jì),整理得到如表:
學(xué)時數(shù) |
| ||||||
男性 | 18 | 12 | 9 | 9 | 6 | 4 | 2 |
女性 | 2 | 4 | 8 | 2 | 7 | 13 | 4 |
(1)根據(jù)上表估計(jì)男性客戶購買該課程學(xué)時數(shù)的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表,結(jié)果保留小數(shù)點(diǎn)后兩位);
(2)從這100位客戶中,對購買該課程學(xué)時數(shù)在20以下的女性客戶按照分層抽樣的方式隨機(jī)抽取7人,再從這7人中隨機(jī)抽取2人,求這2人購買的學(xué)時數(shù)都不低于15的概率.
(3)將購買該課程達(dá)到25學(xué)時及以上者視為“十分愛好該課程者”,25學(xué)時以下者視,為“非十分愛好該課程者”.請根據(jù)已知條件完成以下列聯(lián)表,并判斷是否有99.9%的把握認(rèn)為“十分愛好該課程者”與性別有關(guān)?
非十分愛好該課程者 | 十分愛好該課程者 | 合計(jì) | |
男性 | |||
女性 | |||
合計(jì) | 100 |
附:,
| 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知F1,F2分別是橢圓C:1(>b>0)的左、右焦點(diǎn),過F2且不與x軸垂直的動直線l與橢圓交于M,N兩點(diǎn),點(diǎn)P是橢圓C右準(zhǔn)線上一點(diǎn),連結(jié)PM,PN,當(dāng)點(diǎn)P為右準(zhǔn)線與x軸交點(diǎn)時有2PF2=F1F2.
(1)求橢圓C的離心率;
(2)當(dāng)點(diǎn)P的坐標(biāo)為(2,1)時,求直線PM與直線PN的斜率之和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率是,上頂點(diǎn)B是拋物線的焦點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若是橢圓上的兩個動點(diǎn),且(是坐標(biāo)原點(diǎn)),試問:點(diǎn)到直線的距離是否為定值?若是,試求出這個定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列四個命題
①已知為橢圓上任意一點(diǎn),,是橢圓的兩個焦點(diǎn),則的周長是8;
②已知是雙曲線上任意一點(diǎn),是雙曲線的右焦點(diǎn),則;
③已知直線過拋物線的焦點(diǎn),且與交于,,,兩點(diǎn),則;
④橢圓具有這樣的光學(xué)性質(zhì):從橢圓的一個焦點(diǎn)出發(fā)的光線,經(jīng)橢圓反射后,反射光線經(jīng)過橢圓的另一個焦點(diǎn),今有一個水平放置的橢圓形臺球盤,點(diǎn),是它的焦點(diǎn),長軸長為,焦距為,若靜放在點(diǎn)的小球(小球的半徑忽略不計(jì))從點(diǎn)沿直線出發(fā)則經(jīng)橢圓壁反射后第一次回到點(diǎn)時,小球經(jīng)過的路程恰好是.
其中正確命題的序號為__(請將所有正確命題的序號都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某品牌新款夏裝即將上市,為了對新款夏裝進(jìn)行合理定價,在該地區(qū)的三家連鎖店各進(jìn)行了兩天試銷售,得到如下數(shù)據(jù):
連鎖店 | A店 | B店 | C店 | |||
售價x(元) | 80 | 86 | 82 | 88 | 84 | 90 |
銷量y(元) | 88 | 78 | 85 | 75 | 82 | 66 |
(1)分別以三家連鎖店的平均售價與平均銷量為散點(diǎn),如A店對應(yīng)的散點(diǎn)為,求出售價與銷量的回歸直線方程;
(2)在大量投入市場后,銷量與單價仍然服從(1)中的關(guān)系,且該夏裝成本價為40元/件,為使該新夏裝在銷售上獲得最大利潤,該款夏裝的單價應(yīng)定為多少元?(保留整數(shù))
附:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是菱形,且∠DAB=60°.點(diǎn)E是棱PC的中點(diǎn),平面ABE與棱PD交于點(diǎn)F.
(1)求證:AB∥EF;
(2)若PA=PD=AD,且平面PAD⊥平面ABCD,求平面PAF與平面AFE所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖①,有一個長方體形狀的敞口玻璃容器,底面是邊長為20cm的正方形,高為30cm,內(nèi)有20cm深的溶液.現(xiàn)將此容器傾斜一定角度(圖②),且傾斜時底面的一條棱始終在桌面上(圖①、②均為容器的縱截面).
(1)要使傾斜后容器內(nèi)的溶液不會溢出,角的最大值是多少?
(2)現(xiàn)需要倒出不少于的溶液,當(dāng)時,能實(shí)現(xiàn)要求嗎?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com