【題目】已知A、B、C、D是函數(shù)y=sin(ωx+φ)(ω>0,0<φ<)一個周期內(nèi)的圖象上的四個點,如圖所示,A(﹣ , 0),B為y軸的點,C為圖象上的最低點,E為該函數(shù)圖象的一個對稱中心,B與D關(guān)于點E對稱,在x軸方向上的投影為
(1)求函數(shù)f(x)的解析式及單調(diào)遞減區(qū)間;
(2)將函數(shù)f(x)的圖象向左平移得到函數(shù)g(x)的圖象,已知g(α)= , α∈(﹣ , 0),求g(α+)的值.

【答案】解:(1)∵如圖所示,A(﹣,0),B為y軸上的點,C為圖象上的最低點,E為該函數(shù)圖象的一個對稱中心,B與D關(guān)于點E對稱,在x軸上的投影為,
∴根據(jù)對稱性得出:最大值點的橫坐標為
=+,T=π,
∵T=,
∴ω=2,
∵A(﹣,0)在函數(shù)圖象上,
∴sin(﹣+φ)=0,解得:﹣+φ=kπ,k∈z,可得:φ=kπ+,k∈z,
∴φ=,故可得函數(shù)f(x)的解析式為:y=sin(2x+).
∴由2kπ+≤2x+≤2kπ+,k∈Z即可解得單調(diào)遞減區(qū)間為:[kπ+,kπ+],k∈Z.
(2)∵由題意可得:g(x)=f(x+)=sin[2(x+)+]=sin(2x+)=cos2x.
∴g(α)=cos2α=,
∵α∈(﹣,0),
∴2α∈(﹣,0),可得sin2α=﹣,
∴g(α+)=cos(2α+)=cos2αcos﹣sin2αsin=x﹣(﹣)×=
【解析】(1)根據(jù)函數(shù)想性質(zhì)得出最大值點的橫坐標為 , A(﹣ , 0),得出周期T=π,T= , 即可ω,運用A(﹣ , 0),sin(﹣+φ)=0,得出φ=kπ+ , k∈z,即可求解函數(shù)解析式,由2kπ+≤2x+≤2kπ+ , k∈Z即可解得單調(diào)遞減區(qū)間.
(2)利用函數(shù)y=Asin(ωx+φ)的圖象變換可求g(x),結(jié)合角的范圍可求cos2α,sin2α,利用兩角和的余弦函數(shù)公式即可求值。
【考點精析】本題主要考查了函數(shù)y=Asin(ωx+φ)的圖象變換的相關(guān)知識點,需要掌握圖象上所有點向左(右)平移個單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的橫坐標伸長(縮短)到原來的倍(縱坐標不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的縱坐標伸長(縮短)到原來的倍(橫坐標不變),得到函數(shù)的圖象才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知F1是橢圓5x2+9y2=45的左焦點,P為橢圓上半部分任意一點,A(1,1)為橢圓內(nèi)一點,則|PA|+|PF1|的最小值_______________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sinx(sinx+cosx).
(1)求f(x)的最小正周期和最大值;
(2)在銳角三角形ABC中,角A,B,C的對邊分別為a,b,c,若f()=1,a=2 , 求三角形ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一塊邊長為1(百米)的正方形區(qū)域ABCD.在點A處有一個可轉(zhuǎn)動的探照燈,其照射角∠PAQ始終為45°(其中點P,Q分別在邊BC,CD上),設(shè)BP=t.
(I)用t表示出PQ的長度,并探求△CPQ的周長l是否為定值;
(Ⅱ)設(shè)探照燈照射在正方形ABCD內(nèi)部區(qū)域的面積S(平方百米),求S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓: , 左右焦點分別為F1 , F2 , 過F1的直線l交橢圓于A,B兩點,若|BF2|+|AF2|的最大值為5,則b的值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某自行車手從O點出發(fā),沿折線O﹣A﹣B﹣O勻速騎行,其中點A位于點O南偏東45°且與點O相距20 千米.該車手于上午8點整到達點A,820分騎至點C,其中點C位于點O南偏東(45°﹣α)(其中sinα= ,0°<α<90°)且與點O相距5 千米(假設(shè)所有路面及觀測點都在同一水平面上).

(1)求該自行車手的騎行速度;

(2)若點O正西方向27.5千米處有個氣象觀測站E,假定以點E為中心的3.5千米范圍內(nèi)有長時間的持續(xù)強降雨.試問:該自行車手會不會進入降雨區(qū),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,短軸長為,右焦點為 (1) 求橢圓的標準方程;(2) 若直線經(jīng)過點且與橢圓有且僅有一個公共點,過點作直線交橢圓于另一點 ①證明:當直線與直線的斜率,均存在時,.為定值;②求面積的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】制定投資計劃時,不僅要考慮可能獲得的盈利,而且要考慮可能出現(xiàn)的虧損.某投資人打算投資甲、乙兩個項目.根據(jù)預(yù)測,甲、乙項目可能的最大盈利率分別為100%50%,可能的最大虧損分別為30%10%.投資人計劃投資金額不超過10萬元,要求確?赡艿馁Y金虧損不超過1.8萬元.問投資人對甲、乙兩個項目各投資多少萬元,才能使可能的盈利最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù)f(x)與g(x)和區(qū)間D,如果存在x0∈D,使|f(x0)﹣g(x0)|≤1,則稱x0是函數(shù)f(x)與g(x)在區(qū)間D上的“友好點”.現(xiàn)給出兩個函數(shù):
①f(x)=x2 , g(x)=2x﹣2;② ,g(x)=x+2;
③f(x)=ex , ;④f(x)=lnx,g(x)=x.
則在區(qū)間(0,+∞)上存在唯一“友好點”的是 . (填上所有正確的序號)

查看答案和解析>>

同步練習(xí)冊答案