已知中心在坐標(biāo)原點(diǎn)O的橢圓C經(jīng)過(guò)點(diǎn)A(2,3),且點(diǎn)F(2,0)為其右焦點(diǎn).

(1)求橢圓C的方程;

(2)是否存在平行于OA的直線l,使得直線l與橢圓C有公共點(diǎn),且直線OAl的距離等于4?若存在,求出直線l的方程;若不存在,請(qǐng)說(shuō)明理由.

 

(1) (2)不存在

【解析】(1)依題意,可設(shè)橢圓C的方程為1(a>b>0),且可知左焦點(diǎn)為F′(2,0)

從而有解得

a2b2c2,所以b212,故橢圓C的方程為

(2)假設(shè)存在符合題意的直線l,由題知直線l的斜率與直線OA的斜率相等,故可設(shè)直線l的方程為yxt.3x23txt2120.

因?yàn)橹本l與橢圓C有公共點(diǎn),所以Δ(3t)24×3(t212)≥0,解得-4t≤4.

另一方面,由直線OAl的距離d4,可得4,從而t±2.由于±2[4,4],所以符合題意的直線l不存在.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練15練習(xí)卷(解析版) 題型:解答題

設(shè)橢圓1(a>b>0)的左焦點(diǎn)為F,離心率為,過(guò)點(diǎn)F且與x軸垂直的直線被橢圓截得的線段長(zhǎng)為.

(1)求橢圓的方程;

(2)設(shè)A,B分別為橢圓的左、右頂點(diǎn),過(guò)點(diǎn)F且斜率為k的直線與橢圓交于C,D兩點(diǎn).若8,求k的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練12練習(xí)卷(解析版) 題型:選擇題

已知mn是兩條不同的直線,αβ是兩個(gè)不重合的平面,那么下面給出的條件中一定能推出mβ的是(  )

Aαβ,且m?α Bmn,且nβ

Cαβ,且mα Dmn,且nβ

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練10練習(xí)卷(解析版) 題型:填空題

設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,若 (nN*)是非零常數(shù),則稱該數(shù)列為和等比數(shù)列;若數(shù)列{cn}是首項(xiàng)為2,公差為d(d≠0)的等差數(shù)列,且數(shù)列{cn}和等比數(shù)列,則d________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練10練習(xí)卷(解析版) 題型:選擇題

數(shù)列{an}的通項(xiàng)公式an,若{an}n項(xiàng)和為24,則n( )

A25 B576 C624 D625

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練優(yōu)化重組卷5練習(xí)卷(解析版) 題型:選擇題

已知點(diǎn)P(x,y)是直線kxy40(k>0)上一動(dòng)點(diǎn),PAPB是圓Cx2y22y0的兩條切線,A,B為切點(diǎn),若四邊形PACB的最小面積是2,則k的值為(  )

A4 B3 C2 D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練優(yōu)化重組卷5練習(xí)卷(解析版) 題型:選擇題

已知過(guò)A(1a),B(a,8)兩點(diǎn)的直線與直線2xy10平行,則a的值為(  )

A.-10 B17 C5 D2

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練優(yōu)化重組卷3練習(xí)卷(解析版) 題型:解答題

已知等差數(shù)列{an}滿足:a25,a4a622,數(shù)列{bn}滿足b12b2

2n1bnnan,設(shè)數(shù)列{bn}的前n項(xiàng)和為Sn.

(1)求數(shù)列{an},{bn}的通項(xiàng)公式;

(2)求滿足13<Sn<14n的集合.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練優(yōu)化重組卷1練習(xí)卷(解析版) 題型:選擇題

甲射擊命中目標(biāo)的概率是,乙命中目標(biāo)的概率是,丙命中目標(biāo)的概率是.現(xiàn)在三人同時(shí)射擊目標(biāo),則目標(biāo)被擊中的概率為(  )

A. B. C. D.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案