在直角坐標系中,點到兩點的距離之和等于4,設點的軌跡為,直線與交于兩點.
(1)寫出的方程;
(2)若點在第一象限,證明當時,恒有.
(1);(2)詳見解析.
解析試題分析:(1)根據橢圓的定義,可判斷點的軌跡為橢圓,再根據橢圓的基本量,容易寫出橢圓的方程,求曲線的方程一般可設動點坐標為,然后去探求動點坐標滿足的方程,但如果根據特殊曲線的定義,先行判斷出曲線的形狀(如橢圓,圓,拋物線等),則可直接寫出其方程;(2)一般地,涉及直線與二次曲線相交的問題,則可聯(lián)立方程組,或解出交點坐標,或設而不求,利用一元二次方程根與系數的關系建立關系求出參數的值(取值范圍),本題可設,根據兩點坐標滿足的方程,去判斷的符號.
試題解析:(1)設,由橢圓定義可知,點的軌跡是以為焦點,長半軸為2的橢圓,它的短半軸, 2分
故曲線的方程為. 5分
(2)證明:設,其坐標滿足消去并整理,得
7分
故. 9分
. 11分
因為在第一象限,故.
由知,從而.
又,故,
即在題設條件下,恒有. 13分
考點:橢圓的方程,直線與橢圓的位置關系.
科目:高中數學 來源: 題型:解答題
已知平面內一動點P到點F(1,0)的距離與點P到y(tǒng)軸的距離的差等于1.
(Ⅰ)求動點P的軌跡C的方程;
(Ⅱ)過點F作兩條斜率存在且互相垂直的直線l1,l2,設l1與軌跡C相交于點A,B,l2與軌跡C相交于點D,E,求的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知左焦點為的橢圓過點.過點分別作斜率為的橢圓的動弦,設分別為線段的中點.
(1)求橢圓的標準方程;
(2)若為線段的中點,求;
(3)若,求證直線恒過定點,并求出定點坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓:的左焦點為,右焦點為.
(Ⅰ)設直線過點且垂直于橢圓的長軸,動直線垂直于點P,線段的垂直平分線交于點M,求點M的軌跡的方程;
(Ⅱ)設為坐標原點,取曲線上不同于的點,以為直徑作圓與相交另外一點,求該圓的面積最小時點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系中,動點到兩點,的距離之和等于,設點的軌跡為曲線,直線過點且與曲線交于,兩點.
(1)求曲線的軌跡方程;
(2)是否存在△面積的最大值,若存在,求出△的面積;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓()右頂點與右焦點的距離為,短軸長為.
(I)求橢圓的方程;
(II)過左焦點的直線與橢圓分別交于、兩點,若三角形的面積為,求直線的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線的焦點為,過任作直線(與軸不平行)交拋物線分別于兩點,點關于軸對稱點為,
(1)求證:直線與軸交點必為定點;
(2)過分別作拋物線的切線,兩條切線交于,求的最小值,并求當取最小值時直線的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓C:+=1(a>b>0)的焦距為4,且與橢圓x2+=1有相同的離心率,斜率為k的直線l經過點M(0,1),與橢圓C交于不同的兩點A、B.
(1)求橢圓C的標準方程;
(2)當橢圓C的右焦點F在以AB為直徑的圓內時,求k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
極坐標系中橢圓C的方程為以極點為原點,極軸為軸非負半軸,建立平面直角坐標系,且兩坐標系取相同的單位長度.
(Ⅰ)求該橢圓的直角標方程;若橢圓上任一點坐標為,求的取值范圍;
(Ⅱ)若橢圓的兩條弦交于點,且直線與的傾斜角互補,
求證:.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com