已知正三棱柱ABC-A1B1C1的側(cè)棱長與底面邊長相等,則AB1與側(cè)面ACC1A1所成角的正弦等于(  )

A. B. C. D.

 

A

【解析】如圖所示建立空間直角坐標(biāo)系,設(shè)正三棱柱的棱長為2,O(0,0,0),B(,0,0),A(0,-1,0),B1(,0,2),則(,1,2),則(0,0)為側(cè)面ACC1A1的法向量,由sin θ.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練7練習(xí)卷(解析版) 題型:填空題

如圖,嵩山上原有一條筆直的山路BC,現(xiàn)在又新架設(shè)了一條索道AC,小李在山腳B處看索道AC,發(fā)現(xiàn)張角ABC120°;從B處攀登400到達(dá)D處,回頭看索道AC,發(fā)現(xiàn)張角ADC150°;從D處再攀登800方到達(dá)C處,則索道AC的長為______米.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練15練習(xí)卷(解析版) 題型:解答題

設(shè)橢圓1(a>b>0)的左焦點(diǎn)為F,離心率為,過點(diǎn)F且與x軸垂直的直線被橢圓截得的線段長為.

(1)求橢圓的方程;

(2)設(shè)AB分別為橢圓的左、右頂點(diǎn),過點(diǎn)F且斜率為k的直線與橢圓交于C,D兩點(diǎn).若8,求k的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練14練習(xí)卷(解析版) 題型:選擇題

直線axby1與圓x2y21相交于A,B兩點(diǎn)(其中ab是實(shí)數(shù)),且AOB是直角三角形(O是坐標(biāo)原點(diǎn)),則點(diǎn)P(ab)與點(diǎn)(0,1)之間距離的最小值為(  )

A0 B. C.1 D.1

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練13練習(xí)卷(解析版) 題型:解答題

如圖,AB是圓的直徑,PA垂直圓所在的平面,C是圓上的點(diǎn).

(1)求證:平面PAC平面PBC;

(2)AB2,AC1PA1,求二面角C?PB?A的余弦值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練12練習(xí)卷(解析版) 題型:解答題

如圖,在四棱錐P-ABCD中,PA平面ABCD,底面ABCD是菱形,點(diǎn)O是對(duì)角線ACBD的交點(diǎn),MPD的中點(diǎn),AB2,BAD60°.

(1)求證:OM平面PAB

(2)求證:平面PBD平面PAC;

(3)當(dāng)四棱錐P-ABCD的體積等于時(shí),求PB的長.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練12練習(xí)卷(解析版) 題型:選擇題

已知mn是兩條不同的直線,αβ是兩個(gè)不重合的平面,那么下面給出的條件中一定能推出mβ的是(  )

Aαβ,且m?α Bmn,且nβ

Cαβ,且mα Dmn,且nβ

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練10練習(xí)卷(解析版) 題型:填空題

設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,若 (nN*)是非零常數(shù),則稱該數(shù)列為和等比數(shù)列;若數(shù)列{cn}是首項(xiàng)為2,公差為d(d≠0)的等差數(shù)列,且數(shù)列{cn}和等比數(shù)列,則d________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練優(yōu)化重組卷3練習(xí)卷(解析版) 題型:解答題

已知等差數(shù)列{an}滿足:a25,a4a622,數(shù)列{bn}滿足b12b2

2n1bnnan,設(shè)數(shù)列{bn}的前n項(xiàng)和為Sn.

(1)求數(shù)列{an},{bn}的通項(xiàng)公式;

(2)求滿足13<Sn<14n的集合.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案