如圖,已知橢圓的左、右焦點分別為,其上頂點為已知是邊長為的正三角形.

(1)求橢圓的方程;
(2)過點任作一動直線交橢圓兩點,記.若在線段上取一點,使得,當直線運動時,點在某一定直線上運動,求出該定直線的方程.
(1)橢圓的方程為;(2)定直線的方程為.

試題分析:(1)因為是邊長為2的正三角形,所以,橢圓的方程為;(2)設直線方程為,與橢圓方程聯(lián)立,結(jié)合韋達定理,表示出
設點的坐標為則由,解得,故點在定直線上.
試題解析:(1)因為是邊長為2的正三角形,所以,所以,橢圓的方程為
(2)由題意知,直線的斜率必存在,設其方程為.并設
消去
 

設點的坐標為則由
解得: 故點在定直線上.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的兩個焦點分別為,離心率.
(1)求橢圓的方程;
(2)若直線)與橢圓交于不同的兩點、,且線段 
的垂直平分線過定點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓的兩頂點為,且左焦點為F,是以角B為直角的直角三角形,則橢圓的離心率為 (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

分別是橢圓:的左、右焦點,過傾斜角為的直線與該橢圓相交于P,兩點,且.則該橢圓的離心率為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知點,圓C:與橢圓E:有一個公共點,分別是橢圓的左、右焦點,直線與圓C相切.

(1)求m的值與橢圓E的方程;
(2)設Q為橢圓E上的一個動點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若一個橢圓長軸的長度、短軸的長度和焦距成等差數(shù)列,則該橢圓的離心率是(   )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

分別為橢圓:的左右頂點,為右焦點,在點處的切線,上異于的一點,直線,中點,有如下結(jié)論:①平分;②與橢圓相切;③平分;④使得的點不存在.其中正確結(jié)論的序號是_____________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知點為橢圓的左焦點,點為橢圓上任意一點,點的坐標為,則取最大值時,點的坐標為           

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

是橢圓上兩點,點關于軸的對稱點為(異于點),若直線分別交軸于點,則(     )
A.0B.1C.D.2

查看答案和解析>>

同步練習冊答案