已知拋物線x2=2py(p>0)的焦點為F,頂點為O,準線為l,過該拋物線上異于頂點O的任意一點A作AA1⊥l于點A1,以線段AF,AA1為鄰邊作平行四邊形AFCA1,連接直線AC交l于點D,延長AF交拋物線于另一點B.若△AOB的面積為S△AOB,△ABD的面積為S△ABD,則
(S△AOB)2
S△ABD
的最大值為______.
由題意,
(S△AOB)2
S△ABD
的最大值,一定在特殊位置取得,即AB⊥x軸,
此時S△AOB=
1
2
p
2
•2p
=
1
2
p2
S△ABD=
1
2
•p•2p
=p2,
(S△AOB)2
S△ABD
的最大值為
1
4
p4
p2
=
p2
4

故答案為:
p2
4
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的方程為:
x2
a2
+
y2
b2
=1(a>b>0)
,其中a2=4c,直線l:3x-2y=0與橢圓的交點在x軸上的射影恰為橢圓的焦點.
(Ⅰ)求橢圓的方程;
(Ⅱ)設直線l與橢圓在x軸上方的一個交點為P,F(xiàn)是橢圓的右焦點,試探究以PF為直徑的圓與以橢圓長軸為直徑的圓的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,點F是橢圓W:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點,A、B分別是橢圓的右頂點與上頂點,橢圓的離心率為
1
2
,三角形ABF的面積為
3
3
2
,
(Ⅰ)求橢圓W的方程;
(Ⅱ)對于x軸上的點P(t,0),橢圓W上存在點Q,使得PQ⊥AQ,求實數(shù)t的取值范圍;
(Ⅲ)直線l:y=kx+m(k≠0)與橢圓W交于不同的兩點M、N(M、N異于橢圓的左右頂點),若以MN為直徑的圓過橢圓W的右頂點A,求證:直線l過定點,并求出該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

橢圓
x2
16
+
y2
9
=1
的左、右焦點分別為F1、F2,過焦點F1的直線交橢圓于A,B兩點,若△ABF2的內(nèi)切圓的面積為π.A,B兩點的坐標分別為(x1,y1)和(x2,y2),則|y2-y1|的值為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若橢圓
x2
4
+
y2
a2
=1與雙曲線
x2
a
-
y2
2
=1有相同的焦點,則a的值是( 。
A.1B.-1C.±1D.2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知拋物線C的頂點在原點,經(jīng)過點A(1,2),其焦點F在y軸上,直線y=kx+2交拋物線C于A,B兩點,M是線段AB的中點,過M作x軸的垂線交拋物線C于點N.
(Ⅰ)求拋物線C的方程;
(Ⅱ)證明:拋物線C在點N處的切線與AB平行.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線C1:y2=8x與雙曲線C2
x2
a2
-
y2
b2
=1(a>0,b>0)
有公共焦點F2,點A是曲線C1,C2在第一象限的交點,且|AF2|=5.
(Ⅰ)求雙曲線C2的方程;
(Ⅱ)以F1為圓心的圓M與雙曲線的一條漸近線相切,圓N:(x-2)2+y2=1.平面上有點P滿足:存在過點P的無窮多對互相垂直的直線l1,l2,它們分別與圓M,N相交,且直線l1被圓M截得的弦長與直線l2被圓N截得的弦長的比為
3
:1
,試求所有滿足條件的點P的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知直線與橢圓
x2
9
+
y2
4
=1
交于A,B兩點,設線段AB的中點為P,若直線的斜率為k1,直線OP的斜率為k2,則k1k2等于______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

一束光線從點(0,1)出發(fā),經(jīng)過直線x+y-2=0反射后,恰好與橢圓x2+
y2
2
=1
相切,則反射光線所在的直線方程為______.

查看答案和解析>>

同步練習冊答案