(本小題滿分12分)
已知函數(shù)
(I)求函數(shù)f(x)的最小正周期;
(II)求函數(shù)f(x)在區(qū)間上的最大值和最小值.

(1)  (2) 最大值1,最小值-2

解析試題分析:解:(Ⅰ)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/73/c/1tsnt2.png" style="vertical-align:middle;" />
 
……………2分
 ………………4分
所以的最小正周期為.……………6分
(Ⅱ)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/c7/d/1tvew2.png" style="vertical-align:middle;" />
……………8分
于是,當(dāng)時(shí),
取得最大值1;…………10分
當(dāng)取得最小值—2.……………12分
考點(diǎn):本試題考查了三角函數(shù)的性質(zhì)。
點(diǎn)評:對于三角函數(shù)的圖像與性質(zhì)的問題,解決的關(guān)鍵一步就是將函數(shù)化為單一函數(shù),通常利用兩角和差的公式化簡,進(jìn)而利用三角函數(shù)的性質(zhì)來求解,屬于中檔題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知為坐標(biāo)原點(diǎn),向量,,點(diǎn)是直線上一點(diǎn),且;
(1)設(shè)函數(shù), ,討論的單調(diào)性,并求其值域;
(2)若點(diǎn)、共線,求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知向量,,設(shè)函數(shù).
(Ⅰ)若函數(shù) 的零點(diǎn)組成公差為的等差數(shù)列,求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)若函數(shù)的圖象的一條對稱軸是,(),求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)已知函數(shù)。
(1)求的周期和及其圖象的對稱中心;
(2)在△ABC中,角A、B、C的對邊分別是,滿足 求函數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)(R,,,)圖象如圖,P是圖象的最高點(diǎn),Q為圖象與軸的交點(diǎn),O為原點(diǎn).且,

(Ⅰ)求函數(shù)的解析式;
(Ⅱ)將函數(shù)圖象向右平移1個(gè)單位后得到函數(shù)的圖象,當(dāng)時(shí),求函數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù)

(Ⅰ)求函數(shù)的對稱軸方程;
(Ⅱ)畫出在區(qū)間上的圖象,并求上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)。
(1)求函數(shù)的最小正周期;(7分)
(2)設(shè)函數(shù)對任意,有,且當(dāng)時(shí), ,求函數(shù)上的解析式.(7分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分14分)已知函數(shù)
(1)求函數(shù)的最小正周期,最大值及取最大值時(shí)相應(yīng)的值;
(2)如果,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知:函數(shù)的部分圖象如圖所示.

(Ⅰ)求 函 數(shù)的 解 析 式;
(Ⅱ)在△中,角的 對 邊 分 別是,若的 取 值 范 圍.

查看答案和解析>>

同步練習(xí)冊答案