如圖,在四棱錐A—BCC1B1中,等邊三角形ABC所在平面與正方形BCC1B1所在平面互相垂直,D為CC1的中點.

(1)求證:BD⊥AB1;
(2)求二面角B—AD—B1的余弦值.

(1)見解析   (2)

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

A是△BCD平面外的一點,E,F(xiàn)分別是BC,AD的中點.
(1)求證:直線EF與BD是異面直線;
(2)若AC⊥BD,AC=BD,求EF與BD所成的角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

直三棱柱的底面為等腰直角三角形,,分別是的中點。求異面直線所成角的大小。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,四棱錐中,⊥底面,底面為菱形,點為側棱上一點.
(1)若,求證:平面; 
(2)若,求證:平面⊥平面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在三棱錐中,底面,的中點, 的中點,.

(1)求證:平面;
(2)求與平面成角的正弦值;
(3)設點在線段上,且,平面,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(2013·遼寧高考)如圖,AB是圓O的直徑,PA垂直圓O所在的平面,C是圓O上的點.

(1)求證:平面PAC⊥平面PBC.
(2)設Q為PA的中點,G為△AOC的重心,求證:QG∥平面PBC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在圓錐中,已知的直徑的中點.

(1)證明:
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,正方形ABCD和三角形ACE所在的平面互相垂直,EF∥BD,AB=EF.
(1)求證:BF∥平面ACE;
(2)求證:BF⊥BD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱錐P-ABCD中,四邊形ABCD是矩形,側面PAD⊥底面ABCD,若點E,F(xiàn)分別是PC,BD的中點。

(1)求證:EF∥平面PAD;
(2)求證:平面PAD⊥平面PCD

查看答案和解析>>

同步練習冊答案