【題目】已知橢圓及點,若直線與橢圓交于點,且為坐標原點),橢圓的離心率為.

(1)求橢圓的標準方程;

(2)若斜率為的直線交橢圓于不同的兩點,求面積的最大值.

【答案】(1) ;(2)1.

【解析】試題分析: 由橢圓的離心率公式得到,設點在第一象限,由橢圓的對稱性可知,所以,進而求得點的坐標,然后聯(lián)立方程求得,即可得到橢圓的標準方程;

設直線的方程為,聯(lián)立橢圓方程,求得,設,求出的值,又由題意得, 到直線的距離,進而求得面積的最大值

解析:(1)由橢圓的離心率為,得,所以.

設點在第一象限,由橢圓的對稱性可知,所以,

因為點坐標為,所以點坐標為,

代入橢圓的方程得,與聯(lián)立,

可得,所以橢圓的標準方程為.

(2)設直線的方程為,由.

由題意得, ,

整理得,所以.

,則,

所以

.

又由題意得, 到直線的距離.

的面積

當且僅當,即時取等號,且此時滿足,

所以面積的最大值為1.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】(數(shù)學文卷·2017屆湖北省黃岡市高三上學期期末考試第16題) “中國剩余定理”又稱“孫子定理”.1852年英國來華傳教偉烈亞利將《孫子算經(jīng)》中“物不知數(shù)”問題的解法傳至歐洲.1874年,英國數(shù)學家馬西森指出此法符合1801年由高斯得出的關于同余式解法的一般性定理,因而西方稱之為“中國剩余定理”. “中國剩余定理”講的是一個關于整除的問題,現(xiàn)有這樣一個整除問題:將2至2017這2016個數(shù)中能被3除余1且被5除余1的數(shù)按由小到大的順序排成一列,構(gòu)成數(shù)列,則此數(shù)列的項數(shù)為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)y=f(x)對定義域內(nèi)的每一個值x1,在其定義域內(nèi)都存在唯一的x2,使f(x1)f(x2)=1成立,則稱該函數(shù)為依賴函數(shù)

(1) 判斷函數(shù)g(x)=2x是否為依賴函數(shù),并說明理由;

(2) 若函數(shù)f(x)=(x–1)2在定義域[m,n](m>1)上為依賴函數(shù),求實數(shù)m、n乘積mn的取值范圍;

(3) 已知函數(shù)f(x)=(x–a)2 (a<)在定義域[,4]上為依賴函數(shù).若存在實數(shù)x[4],使得對任意的tR,有不等式f(x)≥–t2+(s–t)x+4都成立,求實數(shù)s的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若恒成立,求的值;

(3)當時, 恒成立,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知動圓C過定點F2,0),且與直線x=-2相切,圓心C的軌跡為E,

1)求圓心C的軌跡E的方程;

2)若直線lEP,Q兩點,且線段PQ的中心點坐標(1,1),求|PQ|

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩人同時從A地趕往B地,甲先騎自行車到中點改為跑步,而乙則是先跑步,到中點后改為騎自行車,最后兩人同時到達B地.已知甲騎自行車比乙騎自行車快.若每人離開甲地的距離與所用時間的函數(shù)用圖象表示,則甲、乙對應的圖象分別是

A.甲是(1),乙是(2)B.甲是(1),乙是(4)

C.甲是(3),乙是(2)D.甲是(3),乙是(4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)具備以下兩個條件:(1)至少有一條對稱軸或一個對稱中心;(2)至少有兩個零點,則稱這樣的函數(shù)為“多元素”函數(shù),下列函數(shù)中為“多元素”函數(shù)的是_______.

;②;③;④.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列語句是否為命題?如果是,判斷它的真假.

1)這道數(shù)學題有趣嗎?(20不可能不是自然數(shù);(3;(4

591不是素數(shù);(6)上海的空氣質(zhì)量越來越好.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“過大年,吃水餃”是我國不少地方過春節(jié)的一大習俗.2018年春節(jié)前夕, 市某質(zhì)檢部門隨機抽取了100包某種品牌的速凍水餃,檢測其某項質(zhì)量指標,檢測結(jié)果如頻率分布直方圖所示.

(1)求所抽取的100包速凍水餃該項質(zhì)量指標值的樣本平均數(shù)(同一組中數(shù)據(jù)用該組區(qū)間的中點值作代表);

(2)①由直方圖可以認為,速凍水餃的該項質(zhì)量指標值服從正態(tài)分布,利用該正態(tài)分布,求落在內(nèi)的概率;

②將頻率視為概率,若某人從某超市購買了4包這種品牌的速凍水餃,記這4包速凍水餃中這種質(zhì)量指標值位于內(nèi)的包數(shù)為,求的分布列和數(shù)學期望.

附:①計算得所抽查的這100包速凍水餃的質(zhì)量指標的標準差為

②若,則

查看答案和解析>>

同步練習冊答案