【題目】已知命題;命題:函數(shù)在區(qū)間上為減函數(shù).

(1)若命題為真命題,求實數(shù)的取值范圍;

(2)若命題“”為真命題,且“”為假命題,求實數(shù)的取值范圍.

【答案】(1) ;(2) .

【解析】試題分析:(1)當(dāng)命題為真命題時, ,所以,且,即可解得實數(shù)的取值范圍;

(2)當(dāng)命題為真命題時,函數(shù)在區(qū)間上為減函數(shù),所以.因為命題“”為真命題,且“”為假命題,所以命題一真一假,分假, 真兩種情況進(jìn)行討論即得實數(shù)的取值范圍.

試題解析:

(1)當(dāng)命題為真命題時, ,

,且,

解得,

即實數(shù)的取值范圍為.

(2)當(dāng)命題為真命題時,函數(shù)在區(qū)間上為減函數(shù),

.

∵命題“”為真命題,且“”為假命題,∴命題一真一假.

①當(dāng)假時, ,解得

②當(dāng)真時, ,解得.

綜上,實數(shù)的取值范圍是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某汽車站每天均有3輛開往省城的分為上、中、下等級的客車,某天袁先生準(zhǔn)備在該汽車站乘車前往省城辦事,但他不知道客車的車況,也不知道發(fā)車順序.為了盡可能乘上上等車,他采取如下策略:先放過一輛,如果第二輛比第一輛好則上第二輛,否則上第三輛.則他乘上上等車的概率為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)調(diào)查了某班全部45名同學(xué)參加書法社團(tuán)和演講社團(tuán)的情況,數(shù)據(jù)如下表:(單位:人)

參加書法社團(tuán)

未參加書法社團(tuán)

參加演講社團(tuán)

8

5

未參加演講社團(tuán)

2

30

(1)從該班隨機(jī)選1名同學(xué),求該同學(xué)至少參加一個社團(tuán)的概率;

(2)在既參加書法社團(tuán)又參加演講社團(tuán)的8名同學(xué)中,有5名男同學(xué)A1,A2,A3,A4,A5,3名女同學(xué)B1,B2,B3.現(xiàn)從這5名男同學(xué)和3名女同學(xué)中各隨機(jī)選1人,求A1被選中且B1未被選中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某險種的基本保費為a(單位:元),繼續(xù)購買該險種的投保人稱為續(xù)保人,續(xù)保人本年度的保費與其上年度出險次數(shù)的關(guān)聯(lián)如下:

上年度出險次數(shù)

0

1

2

3

4

≥5

保費

0.85a

a

1.25a

1.5a

1.75a

2a

隨機(jī)調(diào)查了該險種的200名續(xù)保人在一年內(nèi)的出險情況,得到如下統(tǒng)計表:

出險次數(shù)

0

1

2

3

4

≥5

頻數(shù)

60

50

30

30

20

10

(1)記A為事件:“一續(xù)保人本年度的保費不高于基本保費”,求P(A)的估計值;

(2)記B為事件:“一續(xù)保人本年度的保費高于基本保費但不高于基本保費的160%”,求P(B)的估計值;

(3)求續(xù)保人本年度平均保費的估計值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)的圖象向右平移個單位長度,所得圖象對應(yīng)的函數(shù)

A. 在區(qū)間上單調(diào)遞增 B. 在區(qū)間上單調(diào)遞減

C. 在區(qū)間上單調(diào)遞增 D. 在區(qū)間上單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給定集合A={a1 , a2 , a3 , …,an}(n∈N* , n≥3)中,定義ai+aj(1≤i<j≤n,i,j∈N*)中所有不同值的個數(shù)為集合A兩元素和的容量,用L(A)表示.若數(shù)列{an}是公差不為0的等差數(shù)列,設(shè)集合A={a1 , a2 , a3 , …,a2016},則L(A)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩個焦點分別為 ,且經(jīng)過點.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)的頂點都在橢圓上,其中關(guān)于原點對稱,試問能否為正三角形?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖, 已知四邊形ABCDBCEG均為直角梯形,ADBC,CEBG,且,平面ABCD平面BCEG,BC=CD=CE=2AD=2BG=2.

1)求證:ECCD;

2)求證:AG平面BDE

3)求:幾何體EG-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)的定義域為R,并且圖象關(guān)于y軸對稱,當(dāng)x≤-1時,yf(x)的圖象是經(jīng)過點(-2,0)(-1,1)的射線,又在yf(x)的圖象中有一部分是頂點在(0,2),且經(jīng)過點(1,1)的一段拋物線.

(1)試求出函數(shù)f(x)的表達(dá)式,作出其圖象

(2)根據(jù)圖象說出函數(shù)的單調(diào)區(qū)間,以及在每一個單調(diào)區(qū)間上函數(shù)是增函數(shù)還是減函數(shù).

查看答案和解析>>

同步練習(xí)冊答案