精英家教網 > 高中數學 > 題目詳情
用二分法求f(x)=0的近似解,已知f(1)=-2,f(3)=0.625,則下一步要求f(2),若f(2)=-0.984,則下一步要求f(m),m=
 
分析:由題意根據二分法求方程的近似解的方法和步驟,方程的解所在的區(qū)間為(2,3),則下一步要求f(
5
2
)的符號,由此可得m的值.
解答:解:由題意根據二分法求方程的近似解的方法和步驟,方程的解所在的區(qū)間為(2,3),
則下一步要求f(
5
2
)的符號,故m=
5
2

故答案為
5
2
點評:本題主要考查用二分法求方程的近似解的方法和步驟,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

2、用二分法求f(x)=0的近似解(精確到0.1),利用計算器得f(2)<0,f(3)>0,f(2.5)<0,f(2.75)>0,f(2.625)>0,f(2.5625)>0,則近似解所在區(qū)間是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

用二分法求f(x)=0的近似解,已知f(1)=-2,f(3)=0.625,f(2)=-0.984,若要求下一個f(m),則m=
5
2
5
2

查看答案和解析>>

科目:高中數學 來源: 題型:

下面有四個命題:
①函數y=sin4x-cos4x的最小正周期是π.
②終邊在直線y=±x上的角的集合是{α|α=
2
+
π
4
,k∈Z}

③函數y=sin(x-
π
2
)在[0,π]
上是減函數.
④連續(xù)函數f(x)定義在[2,4]上,若有f(2)•f(4)<0,要用二分法求f(x)的一個零點,精確度為0.1,則最多將進行5次二等分區(qū)間.
其中,真命題的編號是
①②④
①②④
(寫出所有真命題的編號)

查看答案和解析>>

科目:高中數學 來源: 題型:

下面有五個命題:
①函數y=sin4x-cos4x的最小正周期是π.
②終邊在直線y=±x上的角的集合是{α|α=
2
+
π
4
,k∈Z}

③函數y=sin(x+
π
3
)
的圖象向右平移
π
6
得到y=3sin2x的圖象
④函數y=sin(x-
π
2
)在[0,π]
上是減函數.
⑤連續(xù)函數f(x)定義在[2,4]上,若有f(2)•f(4)>0,要用二分法求f(x)的一個零點,精確度為0.1,則最多將進行5次二等分區(qū)間.
其中,真命題的編號是
①②⑤
①②⑤
(寫出所有真命題的編號)

查看答案和解析>>

同步練習冊答案