定義區(qū)間,,,的長(zhǎng)度均為. 用表示不超過(guò)的最大整數(shù),記,其中.設(shè),,若用表示不等式解集區(qū)間的長(zhǎng)度,則當(dāng)時(shí),有(     )
A.B.C.D.
A

試題分析:由,于是,顯然,于是,又,所以,即.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025009620359.png" style="vertical-align:middle;" />,且同時(shí)滿足以下三個(gè)條件:①;②對(duì)任意的,都有;③當(dāng)時(shí)總有.
(1)試求的值;
(2)求的最大值;
(3)證明:當(dāng)時(shí),恒有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

一企業(yè)生產(chǎn)的某產(chǎn)品在不做電視廣告的前提下,每天銷(xiāo)售量為b噸.經(jīng)市場(chǎng)調(diào)查后得到如下規(guī)律:若對(duì)產(chǎn)品進(jìn)行電視廣告的宣傳,每天的銷(xiāo)售量S(噸)與電視廣告每天的播放量n(次)的關(guān)系可用如圖所示的程序框圖來(lái)體現(xiàn).

(1)試寫(xiě)出該產(chǎn)品每天的銷(xiāo)售量S(噸)關(guān)于電視廣告每天的播放量n(次)的函數(shù)關(guān)系式;
(2)要使該產(chǎn)品每天的銷(xiāo)售量比不做電視廣告時(shí)的銷(xiāo)售量至少增加90%,則每天電視廣告的播放量至少需多少次?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某投資公司投資甲、乙兩個(gè)項(xiàng)目所獲得的利潤(rùn)分別是P(億元)和Q億元),它們與投資額t(億元)的關(guān)系有經(jīng)驗(yàn)公式其中,今該公司將5億元投資這兩個(gè)項(xiàng)目,其中對(duì)甲項(xiàng)目投資x(億元),投資這兩個(gè)項(xiàng)目所獲得的總利潤(rùn)為y(億元),
(1)求y關(guān)于x的解析式,
(2)怎樣投資才能使總利潤(rùn)最大,最大值為多少?.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知是定義在上的奇函數(shù),且,若恒成立.
(1)判斷上是增函數(shù)還是減函數(shù),并證明你的結(jié)論;
(2)若對(duì)所有恒成立,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知二次函數(shù)與兩坐標(biāo)軸分別交于不同的三點(diǎn)A、B、C.
(1)求實(shí)數(shù)t的取值范圍;
(2)當(dāng)時(shí),求經(jīng)過(guò)A、B、C三點(diǎn)的圓F的方程;
(3)過(guò)原點(diǎn)作兩條相互垂直的直線分別交圓F于M、N、P、Q四點(diǎn),求四邊形的面積的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù),其中,若對(duì)任意的非零實(shí)數(shù),存在唯一的非零實(shí)數(shù),使得成立,則k的最小值為( )
A.B.5C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù),若,則的取值范圍是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

,則的表達(dá)式為(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案