【題目】某村計(jì)劃建造一個(gè)室內(nèi)面積為800m2的矩形蔬菜溫室,在室內(nèi),沿左、右兩側(cè)與后側(cè)內(nèi)墻各保留1m寬的通道,沿前側(cè)內(nèi)墻保留3m寬的空地.當(dāng)矩形溫室的邊長(zhǎng)各為多少時(shí),蔬菜的種植面積最大?最大種植面積是多少?
【答案】長(zhǎng)為20m,寬為40m.,最大種植面積為648.
【解析】試題分析:設(shè)出矩形的長(zhǎng)為a與寬b,建立蔬菜面積關(guān)于矩形邊長(zhǎng)的函數(shù)關(guān)系式S=(a-4)(b-2)=ab-4b-2a+8=800-2(a+2b).利用基本不等式變形求解
試題解析:設(shè)矩形溫室的左側(cè)邊長(zhǎng)為a m,后側(cè)邊長(zhǎng)為b m,則 ab=800.
蔬菜的種植面積
所以
當(dāng)
答:當(dāng)矩形溫室的左側(cè)邊長(zhǎng)為40m,后側(cè)邊長(zhǎng)為20m時(shí),蔬菜的種植面積最大,最大種植面積為648m2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為, , 為橢圓的上頂點(diǎn), 為等邊三角形,且其面積為, 為橢圓的右頂點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線與橢圓相交于兩點(diǎn)(不是左、右頂點(diǎn)),且滿足,試問(wèn):直線是否過(guò)定點(diǎn)?若過(guò)定點(diǎn),求出該定點(diǎn)的坐標(biāo),否則說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【2018海南高三階段性測(cè)試(二模)】如圖,在直三棱柱中, , ,點(diǎn)為的中點(diǎn),點(diǎn)為上一動(dòng)點(diǎn).
(I)是否存在一點(diǎn),使得線段平面?若存在,指出點(diǎn)的位置,若不存在,請(qǐng)說(shuō)明理由.
(II)若點(diǎn)為的中點(diǎn)且,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】高考復(fù)習(xí)經(jīng)過(guò)二輪“見(jiàn)多識(shí)廣”之后,為了研究考前“限時(shí)搶分”強(qiáng)化訓(xùn)練次數(shù)與答題正確率的關(guān)系,對(duì)某校高三某班學(xué)生進(jìn)行了關(guān)注統(tǒng)計(jì),得到如表數(shù)據(jù):
1 | 2 | 3 | 4 | |
20 | 30 | 50 | 60 |
(1)求關(guān)于的線性回歸方程,并預(yù)測(cè)答題正確率是的強(qiáng)化訓(xùn)練次數(shù)(保留整數(shù));
(2)若用()表示統(tǒng)計(jì)數(shù)據(jù)的“強(qiáng)化均值”(保留整數(shù)),若“強(qiáng)化均值”的標(biāo)準(zhǔn)差在區(qū)間內(nèi),則強(qiáng)化訓(xùn)練有效,請(qǐng)問(wèn)這個(gè)班的強(qiáng)化訓(xùn)練是否有效?
附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:
, ,樣本數(shù)據(jù), ,…, 的標(biāo)準(zhǔn)差為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時(shí),求函數(shù)在上的最大值M.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從某技術(shù)公司開發(fā)的某種產(chǎn)品中隨機(jī)抽取200件,測(cè)量這些產(chǎn)品的一項(xiàng)質(zhì)量指標(biāo)值(記為),由測(cè)量結(jié)果得到如下頻率分布直方圖:
公司規(guī)定:當(dāng)時(shí),產(chǎn)品為正品;當(dāng)時(shí),產(chǎn)品為次品,公司每生產(chǎn)一件這種產(chǎn)品,若是正品,則盈利90元;若是次品,則虧損30元,記的分布列和數(shù)學(xué)期望;
由頻率分布直方圖可以認(rèn)為,服從正態(tài)分布,其中近似為樣本平均數(shù),近似為樣本方差(同一組中的數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表)
①利用該正態(tài)分布,求;
②某客戶從該公司購(gòu)買了500件這種產(chǎn)品,記表示這500件產(chǎn)品中該項(xiàng)質(zhì)量指標(biāo)值位于區(qū)間的產(chǎn)品件數(shù),利用①的結(jié)果,求.
附:,
若,則,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的參數(shù)方程為(為參數(shù)).以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求的普通方程和的直角坐標(biāo)方程;
(2)若過(guò)點(diǎn)的直線與交于,兩點(diǎn),與交于,兩點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4,坐標(biāo)系與參數(shù)方程
已知在平面直角坐標(biāo)系xOy中,橢圓C的方程為,以O為極點(diǎn),x軸的非負(fù)半軸為極軸,取相同的長(zhǎng)度單位建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求直線的直角坐標(biāo)方程;
(2)設(shè)M(x,y)為橢圓C上任意一點(diǎn),求|x+y﹣1|的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù),),在以坐標(biāo)原點(diǎn)為極點(diǎn),軸非負(fù)軸為極軸的極坐標(biāo)系中,曲線:(為極角).
(1)將曲線化為極坐標(biāo)方程,當(dāng)時(shí),將化為直角坐標(biāo)方程;
(2)若曲線與相交于一點(diǎn),求點(diǎn)的直角坐標(biāo)使到定點(diǎn)的距離最小.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com