已知是函數(shù)的一個極值點(diǎn)。

(1)求的值;

(2)求函數(shù)的單調(diào)區(qū)間;

(3)若直線與函數(shù)的圖象有3個交點(diǎn),求的取值范圍。

 

【答案】

解:(1)因為          。。。。。。。1分

 所以  ,  因此    。。。。。。。2分

(2)由(1)知,

 

            。。。。。。。3分

當(dāng)時,

當(dāng)時,                。。。。。。。4分

所以的單調(diào)增區(qū)間是

的單調(diào)減區(qū)間是           。。。。。。。5分

(3)由(2)知,內(nèi)單調(diào)增加,在內(nèi)單調(diào)減少,在上單調(diào)增加,且當(dāng)時,

所以的極大值為,極小值為。。。。。。。6分

因為

所以在的三個單調(diào)區(qū)間直線的圖象各有一個交點(diǎn),當(dāng)且僅當(dāng)                    。。。。。。。7分

因此,的取值范圍為     。。。。。。。。8分

【解析】本試題主要是考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。

(1)因為是函數(shù)的一個極值點(diǎn),那么可知在x=3處的到數(shù)值為零,得到參數(shù)a的值。

(2)由(1)知,

 

從而求解函數(shù)的單調(diào)區(qū)間。

(3)由(2)知,內(nèi)單調(diào)增加,在內(nèi)單調(diào)減少,在上單調(diào)增加,且當(dāng)時,

所以的極大值為,極小值為利用極值的符號確定參數(shù)的范圍。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014屆四川達(dá)州第一中學(xué)高二下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知是函數(shù)的一個極值點(diǎn),其中

(1)求的關(guān)系式;

(2)求的單調(diào)區(qū)間;

(3)設(shè)函數(shù)函數(shù)g(x)= ;試比較g(x)與的大小。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東師大附中高三12月(第三次)模擬檢測理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分)已知是函數(shù)的一個極值點(diǎn). 

(Ⅰ)求的值;

(Ⅱ)當(dāng)時,證明:

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆浙江省寧波萬里國際學(xué)校高二下期中文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知是函數(shù)的一個極值點(diǎn),其中,

(1)求的關(guān)系式;        

(2)求的單調(diào)區(qū)間;

(3)當(dāng)時,函數(shù)的圖象上任意一點(diǎn)的切線斜率恒大于,求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省高三上學(xué)期第三次月考數(shù)學(xué)文卷 題型:解答題

(本小題滿分15分)

 已知是函數(shù)的一個極值點(diǎn),其中。

(Ⅰ)求的關(guān)系表達(dá)式;

(Ⅱ)求的單調(diào)區(qū)間;

(Ⅲ)當(dāng)時,函數(shù)的圖象上任意一點(diǎn)的切線斜率恒大于,求實(shí)數(shù)的取值范圍。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆廣東省高二下學(xué)期第一次月考理科數(shù)學(xué)試卷 題型:解答題

(本小題滿分14分)

已知是函數(shù)的一個極值點(diǎn),其中,

(1)求的關(guān)系式;

(2)求的單調(diào)區(qū)間;

(3)當(dāng)時,函數(shù)的圖象上任意一點(diǎn)的切線斜率恒大于3,求的取值范圍.

 

查看答案和解析>>

同步練習(xí)冊答案