【題目】如圖,PA垂直于以AB為直徑的圓所在平面,C為圓上異于A,B的任意一點,垂足為E,點F是PB上一點,則下列判斷中不正確的是( )﹒
A.平面PACB.C.D.平面平面PBC
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數(shù)方程為 (為參數(shù)),在以原點為極點, 軸正半軸為極軸的極坐標系中,直線的極坐標方程為.
(1)求的普通方程和直線的傾斜角;
(2)設(shè)點和交于兩點,求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】是空氣質(zhì)量的一個重要指標,我國標準采用世衛(wèi)組織設(shè)定的最寬限值,即日均值在以下空氣質(zhì)量為一級,在之間空氣質(zhì)量為二級,在以上空氣質(zhì)量為超標.如圖是某地月日到日日均值(單位:)的統(tǒng)計數(shù)據(jù),則下列敘述不正確的是( )
A.從日到日,日均值逐漸降低
B.這天的日均值的中位數(shù)是
C.這天中日均值的平均數(shù)是
D.從這天的日均監(jiān)測數(shù)據(jù)中隨機抽出一天的數(shù)據(jù),空氣質(zhì)量為一級的概率是
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知三棱錐的底面是等邊三角形,點在平面上的射影在內(nèi)(不包括邊界),.記,與底面所成角為,;二面角,的平面角為,,則,,,之間的大小關(guān)系等確定的是()
A. B.
C. 是最小角,是最大角D. 只能確定,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2017年被稱為“新高考元年”,隨著上海、浙江兩地順利實施“語數(shù)外+3”新高考方案,新一輪的高考改革還將繼續(xù)在全國推進.遼寧地區(qū)也將于2020年開啟新高考模式,今年秋季入學的高一新生將面臨從物理、化學、生物、政治、歷史、地理等6科中任選三科(共20種選法)作為自己將來高考“語數(shù)外+3”新高考方案中的“3”.某地區(qū)為了順利迎接新高考改革,在某學校理科班的200名學生中進行了“學生模擬選科數(shù)據(jù)”調(diào)查,每個學生只能從表格中的20種課程組合選擇一種學習.模擬選課數(shù)據(jù)統(tǒng)計如下表:
序號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
組合學科 | 物化生 | 物化政 | 物化歷 | 物化地 | 物生政 | 物生歷 | 物生地 |
人數(shù) | 20人 | 5人 | 10人 | 10人 | 10人 | 15人 | 10人 |
序號 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
組合學科 | 物政歷 | 物政地 | 物歷地 | 化生政 | 化生歷 | 化生地 | 化政歷 |
人數(shù) | 5人 | 0人 | 5人 | …… | 40人 | …… | …… |
序號 | 15 | 16 | 17 | 18 | 19 | 20 | |
組合學科 | 化政地 | 化歷地 | 生政歷 | 生政地 | 生歷地 | 政歷地 | 總計 |
人數(shù) | …… | …… | …… | …… | …… | …… | 200人 |
為了解學生成績與學生模擬選課之間的關(guān)系,用分層抽樣的方法從這200名學生中抽取40人的樣本進行分析。
(1)樣本中選擇組合6號“物生歷”的有多少人?樣本中同時選擇學習物理和歷史的有多少人?
(2)從樣本選擇學習物理且學習歷史的學生中隨機抽取3人,求這3人中至少有2人還要學習生物的概率。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將一顆骰子先后拋擲2次,觀察向上的點數(shù),事件A:“兩數(shù)之和為8”,事件B:“兩數(shù)之和是3的倍數(shù)”,事件C:“兩個數(shù)均為偶數(shù)”.
(I)寫出該試驗的基本事件,并求事件A發(fā)生的概率;
(II)求事件B發(fā)生的概率;
(III)事件A與事件C至少有一個發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下圖所示的畢達格拉斯樹畫是由圖(i)利用幾何畫板或者動態(tài)幾何畫板Geogebra做出來的圖片,其中四邊形ABCD.AEFG.PQBE都是正方形.如果改變圖(i)中的大小會得到更多不同的“樹形”.
(1)在圖(i)中,,,且,求AQ;
(2)在圖(ii)中,,,設(shè),求AQ的最大值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè),在集合的所有元素個數(shù)為2的子集中,把每個子集的較大元素相加和記為a,較小元素之和記為b.
(1)當n=3時,求a, b的值;
(2)當n=4時,求集合的所有3個元素子集中所有元素之和;
(3)對任意的,是否為定值?若是定值,請給出證明并求出這個定值;若不是,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com