設(shè)
(I)求上的最小值;
(II)設(shè)曲線在點(diǎn)的切線方程為;求的值。
(1)   (2)
(I)設(shè);則
①當(dāng)時(shí),上是增函數(shù)
得:當(dāng)時(shí),的最小值為
②當(dāng)時(shí),
當(dāng)且僅當(dāng)時(shí),的最小值為
(II)
由題意得:
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(1)已知函數(shù),其中為有理數(shù),且. 求的最小值;
(2)試用(1)的結(jié)果證明如下命題:設(shè),為正有理數(shù). 若,則;
(3)請(qǐng)將(2)中的命題推廣到一般形式,并用數(shù)學(xué)歸納法證明你所推廣的命題.
注:當(dāng)為正有理數(shù)時(shí),有求導(dǎo)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分16分)本題共有3個(gè)小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分6分。
定義:對(duì)函數(shù),對(duì)給定的正整數(shù),若在其定義域內(nèi)存在實(shí)數(shù),使得,則稱函數(shù)為“性質(zhì)函數(shù)”。
(1)判斷函數(shù)是否為“性質(zhì)函數(shù)”?說明理由;
(2)若函數(shù)為“2性質(zhì)函數(shù)”,求實(shí)數(shù)的取值范圍;
(3)已知函數(shù)的圖像有公共點(diǎn),求證:為“1性質(zhì)函數(shù)”。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),①求函數(shù)的單調(diào)區(qū)間;②求函數(shù)的極值,③當(dāng)時(shí),求函數(shù)的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)已知
(1)若,試判斷函數(shù)在定義域內(nèi)的單調(diào)性;
(2)若上恒成立,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

是函數(shù)的導(dǎo)函數(shù),若函數(shù)在區(qū)間上單調(diào)遞減,則實(shí)數(shù)的取值范圍是(      )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),.
(Ⅰ)若函數(shù)依次在處取到極值.求的取值范圍;
(Ⅱ)若存在實(shí)數(shù),使對(duì)任意的,不等式 恒成立.求正整數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)函數(shù)               (     )
A在區(qū)間內(nèi)均有零點(diǎn)。
B在區(qū)間內(nèi)均無零點(diǎn)。
C在區(qū)間內(nèi)有零點(diǎn),在區(qū)間內(nèi)無零點(diǎn)。 
D在區(qū)間內(nèi)無零點(diǎn),在區(qū)間內(nèi)有零點(diǎn)。    

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

,則(    )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案