【題目】如圖,在四棱錐中,底面為平行四邊形, 為側(cè)棱的中點.

(Ⅰ)求證: ∥平面

(Ⅱ)若,,

求證:平面平面

【答案】1)(2)均見解析.

【解析】試題分析:(1)連結(jié)AC,交BDO,連結(jié)OE,EPA的中點,利用三角形中位線的性質(zhì),可知OE∥PC,利用線面平行的判定定理,即可得出結(jié)論;

2)先證明PA⊥DE,再證明PA⊥OE,可得PA⊥平面BDE,從而可得平面BDE⊥平面PAB

證明:(1)連結(jié)AC,交BDO,連結(jié)OE

因為ABCD是平行四邊形,所以OA=OC2分)

因為E為側(cè)棱PA的中點,所以OE∥PC4分)

因為PC平面BDE,OE平面BDE,所以PC∥平面BDE6分)

2)因為EPA中點,PD=AD,所以PA⊥DE8分)

因為PC⊥PAOE∥PC,所以PA⊥OE

因為OE平面BDE,DE平面BDE,OE∩DE=E,

所以PA⊥平面BDE12分)

因為PA平面PAB,所以平面BDE⊥平面PAB14分)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在上的函數(shù)滿足,且.當(dāng)時, .

(1)求上的解析式;

(2)證明上是減函數(shù);

(3)當(dāng)取何值時,方程上有解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), 上有最大值9,最小值4.

(1)求實數(shù)的值;

(2)若不等式上恒成立,求實數(shù)的取值范圍;

(3)若方程有三個不同的實數(shù)根,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是定義域為的奇函數(shù),當(dāng), .

(1)寫出函數(shù)的解析式.

(2)若方程恰有3個不同的解,的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點A是拋物線M:y2=2px(p>0)與圓C:x2+(y﹣4)2=a2在第一象限的公共點,且點A到拋物線M焦點F的距離為a,若拋物線M上一動點到其準(zhǔn)線與到點C的距離之和的最小值為2a,O為坐標(biāo)原點,則直線OA被圓C所截得的弦長為( )
A.2
B.2
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若,用“五點法”在給定的坐標(biāo)系中,畫出函數(shù)[0,π]上的圖象.

(2)若偶函數(shù),求

(3)在(2)的前提下,將函數(shù)的圖象向右平移個單位后,再將得到的圖象上各點的橫坐標(biāo)變?yōu)樵瓉淼?/span>4倍,縱坐標(biāo)不變,得到函數(shù)的圖象,求的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“a=﹣1”是“直線ax+3y+2=0與直線x+(a﹣2)y+1=0平行”的( )
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某污水處理廠要在一個矩形污水處理池的池底水平鋪設(shè)污水凈化管道(, 是直角頂點)來處理污水,管道越長,污水凈化效果越好.設(shè)計要求管道的接口的中點, 分別落在線段.已知米, 米,記.

1試將污水凈化管道的總長度 (的周長)表示為的函數(shù),并求出定義域;

2)問當(dāng)取何值時,污水凈化效果最好?并求出此時管道的總長度.

(提示: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法中,正確的個數(shù)是( )
①函數(shù)f(x)=2x﹣x2的零點有2個;
②函數(shù)y=sin(2x+ )sin( ﹣2x)的最小正周期是π;
③命題“函數(shù)f(x)在x=x0處有極值,則f′(x0)=0”的否命題是真命題;
dx=
A.0
B.1
C.2
D.3

查看答案和解析>>

同步練習(xí)冊答案