【題目】一位數(shù)學(xué)老師在黑板上寫了三個(gè)向量,,,其中都是給定的整數(shù).老師問(wèn)三位學(xué)生這三個(gè)向量的關(guān)系,甲回答:“平行,且垂直”,乙回答:“平行”,丙回答:“不垂直也不平行”,最后老師發(fā)現(xiàn)只有一位學(xué)生判斷正確,由此猜測(cè)的值不可能為( )

A. , B. C. , D.

【答案】D

【解析】分析:討論三種情況,甲判斷正確,乙、丙判斷不正確;乙判斷正確,甲、丙判斷不正確;丙判斷正確,甲、乙判斷不正確,由向量平行和垂直的條件,解方程結(jié)合選項(xiàng)即可得到結(jié)論.

詳解:若甲判斷正確,乙、丙判斷不正確,

可得,解得,

,

可得不平行,垂直,

則乙、丙判斷不正確符合題意;

若判斷正確,甲、丙判斷不正確,

可得,解得,

可得不平行,垂直,

則甲、丙判斷不正確,符合題意;

若丙判斷正確,甲、乙判斷不正確,

可得

解得

成立;也成立;也成立.

,則甲乙丙判斷均錯(cuò).

故選:D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 滿足Sn=2nan+1﹣3n2﹣4n,n∈N* , 且S3=15.
(1)求a1 , a2 , a3的值;
(2)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】7個(gè)人排成一排,按下列要求各有多少種排法?

其中甲不站排頭,乙不站排尾;

其中甲、乙、丙3人兩兩不相鄰;

其中甲、乙中間有且只有1人;

其中甲、乙、丙按從左到右的順序排列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=xcosx﹣sinx,x∈[0, ]
(1)求證:f(x)≤0;
(2)若a< <b對(duì)x∈(0, )上恒成立,求a的最大值與b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形AMDE的邊長(zhǎng)為2,B,C分別為AM,MD的中點(diǎn),在五棱錐P﹣ABCDE中,F(xiàn)為棱PE的中點(diǎn),平面ABF與棱PD,PC分別交于點(diǎn)G,H.

(1)求證:AB∥FG;
(2)若PA⊥底面ABCDE,且PA=AE,求直線BC與平面ABF所成角的大小,并求線段PH的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如表提供了某廠節(jié)能降耗技術(shù)改造后,生產(chǎn)甲產(chǎn)品過(guò)程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸標(biāo)準(zhǔn)煤)的幾組對(duì)照數(shù)據(jù)

x

3

4

5

6

y

2.5

3

4

4.5

(1)請(qǐng)畫出上表數(shù)據(jù)的散點(diǎn)圖;

(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),求出y關(guān)于x的回歸直線方程;

(3)已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標(biāo)準(zhǔn)煤試根據(jù)(2)求出的回歸直線方程,預(yù)測(cè)生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標(biāo)準(zhǔn)煤?

注: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中.已知向量 、 ,| |=| |=1, =0,點(diǎn)Q滿足 = + ),曲線C={P| = cosθ+ sinθ,0≤θ≤2π},區(qū)域Ω={P|0<r≤| |≤R,r<R}.若C∩Ω為兩段分離的曲線,則(
A.1<r<R<3
B.1<r<3≤R
C.r≤1<R<3
D.1<r<3<R

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,拋物線的方程為

(1)以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,求的極坐標(biāo)方程;

(2)直線的參數(shù)方程是為參數(shù)),交于兩點(diǎn), ,求的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,過(guò)點(diǎn)且互相垂直的兩條直線分別與圓交于點(diǎn)A,B,與圓交于點(diǎn)C,D.

(1) 若AB,求CD的長(zhǎng);

(2)若直線斜率為2,求的面積;

(3) 若CD的中點(diǎn)為E,求△ABE面積的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案