【題目】在平面直角坐標系xOy中,已知圓心在軸上的圓經(jīng)過兩點和,直線的方程為.
(1)求圓的方程;
(2)當時,為直線上的定點,若圓上存在唯一一點滿足,求定點的坐標;
(3)設點A,B為圓上任意兩個不同的點,若以AB為直徑的圓與直線都沒有公共點,求實數(shù)的取值范圍.
【答案】(1);(2)或 ;(3).
【解析】
(1)根據(jù)題意,設圓的方程為,列方程解得即可;
(2)根據(jù)題意,利用得點的軌跡方程為,再利用兩圓相切解得即可.
(3)記以為直徑的圓為圓,設,得圓的半徑,利用,表示出動點的軌跡為以為圓心,為半徑的圓的內部(含邊界),再利用點C到直線l的距離,解得即可.
(1)設圓的方程為,將M,N坐標帶入,
得: ,解得,
所以圓的方程為.
(2)設,,由,即,
化簡得,
由題意,此圓與圓C相切,故,解得,
所以或
(3)記以AB為直徑的圓為圓M,設圓M上有一動點,
設,則圓M的半徑,于是
,其中為的夾角,.
因為,所以.
故點在以為圓心,為半徑的圓的內部(含邊界),
所以點C到直線l的距離,即,解得.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知橢圓C:的左、右項點分別為A1,A2,左右焦點分別為F1,F(xiàn)2,離心率為,|F1F2|=,O為坐標原點.
(1)求橢圓C的方程;
(2)設過點P(4,m)的直線PA1,PA2與橢圓分別交于點M,N,其中m>0,求的面積S的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在海岸處,發(fā)現(xiàn)北偏東方向,距離為海里的處有一艘走私船,在處北偏西方向,距離為海里的處有一艘緝私艇奉命以海里/時的速度追截走私船,此時,走私船正以海里/時的速度從處向北偏東方向逃竄.
(1)問船與船相距多少海里?船在船的什么方向?
(2)問緝私艇沿什么方向行駛才能最快追上走私船?并求出所需時間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知一個動點到點的距離比到直線的距離多1.
(1)求動點的軌跡的方程;
(2)若過點的直線與曲線交于兩點,且線段中點是點,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面為直角梯形, , 和均為等邊三角形,且平面平面,點為的中點.
(1)求證: 平面;
(2)求平面與平面所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對函數(shù)f(x)=xsinx,現(xiàn)有下列命題:①函數(shù)f(x)是偶函數(shù);②函數(shù)f(x)的最小正周期是2π;③點(π,0)是函數(shù)f(x)的圖象的一個對稱中心;④函數(shù)f(x)在區(qū)間上單調遞增,在區(qū)間上單調遞減.其中是真命題的是________.(寫出所有真命題的序號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知線段AB的端點B的坐標為(3,0),端點A在圓上運動;
(1)求線段AB中點M的軌跡方程;
(2)過點C(1,1)的直線m與M的軌跡交于G、H兩點,當△GOH(O為坐標原點)的面積最大時,求直線m的方程并求出△GOH面積的最大值.
(3)若點C(1,1),且P在M軌跡上運動,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com