【題目】已知函數(shù)是偶函數(shù).

(1)的值;

(2)若函數(shù)的圖像與的圖像有交點(diǎn),求的取值范圍;

(3)若函數(shù),是否存在實(shí)數(shù)使得最小值為1,若存在,求出的值;若不存在,請(qǐng)說明理由.

【答案】(1)-1;(2);(3)存在使得最小值為1.

【解析】

1)利用函數(shù)為偶函數(shù)即對(duì)任意都有,即可解出的值.

2)函數(shù)的圖像與的圖像有交點(diǎn),即,參變分離即有解,求出函數(shù)的值域即可得出答案.

3)代入化簡得,令,則,討論在區(qū)間的最值,即可得出答案.

1為偶函數(shù)

,

對(duì)任意都成立,

2)由題知有解,

,則有交點(diǎn),

的范圍為.

3

,

對(duì)稱軸,開口向上

當(dāng)時(shí), 上遞增,,

當(dāng)時(shí),,此時(shí)無解

當(dāng)時(shí),上遞減,,此時(shí)無解

綜上,存在使得最小值為1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的三邊長分別為,,,MAB邊上的點(diǎn),P是平面ABC外一點(diǎn).給出下列四個(gè)命題:①若平面ABC,則三棱錐的四個(gè)面都是直角三角形;②若平面ABC,且M是邊AB的中點(diǎn),則有;③若,平面ABC,則面積的最小值為;④若,P在平面ABC上的射影是內(nèi)切圓的圓心,則點(diǎn)P到平面ABC的距離為.其中正確命題的序號(hào)是________.(把你認(rèn)為正確命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若中心在原點(diǎn)的橢圓與雙曲線有共同的焦點(diǎn),且它們的離心率互為倒數(shù),圓的直徑是橢圓的長軸,C是橢圓的上頂點(diǎn),動(dòng)直線AB過C點(diǎn)且與圓交于A、B兩點(diǎn),CD垂直于AB交橢圓于點(diǎn)D.

(1)求橢圓的方程;

(2)求面積的最大值,并求此時(shí)直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中,已知曲線和曲線,以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為軸非負(fù)半軸建立平面直角坐標(biāo)系.

(1)求曲線和曲線的直角坐標(biāo)方程;

(2)若點(diǎn)是曲線上一動(dòng)點(diǎn),過點(diǎn)作線段的垂線交曲線于點(diǎn),求線段長度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)定義在[0,1]上,并且同時(shí)滿足以下兩個(gè)條件的函數(shù)fx)稱為G函數(shù).

對(duì)任意的x∈[0,1],總有fx≥0;

當(dāng)x1≥0x2≥0,x1+x2≤1時(shí),總有fx1+x2≥fx1+fx2)成立.已知函數(shù)gx=x2hx=2xb是定義在[01]上的函數(shù).

1)試問函數(shù)gx)是否為G函數(shù)?并說明理由;

2)若函數(shù)hx)是G函數(shù),求實(shí)數(shù)b組成的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知相互嚙合的兩個(gè)齒輪,大輪有48齒,小輪有20齒,當(dāng)大輪轉(zhuǎn)動(dòng)一周時(shí),小輪轉(zhuǎn)動(dòng)的角是________度,即________rad.如果大輪的轉(zhuǎn)速為(轉(zhuǎn)/分),小輪的半徑為10.5cm,那么小輪周上一點(diǎn)每1s轉(zhuǎn)過的弧長是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

Ⅰ)若的圖像與直線相切,求

Ⅱ)若且函數(shù)的零點(diǎn)為,

設(shè)函數(shù)試討論函數(shù)的零點(diǎn)個(gè)數(shù).(為自然常數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】等比數(shù)列{an}是遞減數(shù)列,前n項(xiàng)的積為Tn,若T13=4T9,則a8a15=(  )

A. 2 B. ±2 C. 4 D. ±4

【答案】A

【解析】

由題意可得 q1,且 an 0,由條件可得 a1a2…a13=4a1a2…a9,化簡得a10a11a12a13=4,再由 a8a15=a10a13=a11a12,求得a8a15的值.

等比數(shù)列{an}是遞增數(shù)列,其前n項(xiàng)的積為Tn(n∈N*),若T13=4T9 ,設(shè)公比為q,

則由題意可得 q1,且 an >0.

∴a1a2…a13=4a1a2…a9,∴a10a11a12a13=4.

又由等比數(shù)列的性質(zhì)可得 a8a15=a10a13=a11a12,∴a8a15=2.

故選:A.

【點(diǎn)睛】

本題主要考查等比數(shù)列的定義和性質(zhì),求得 a10a11a12a13=4是解題的關(guān)鍵.

型】單選題
結(jié)束】
10

【題目】若直線y=2x上存在點(diǎn)(xy)滿足約束條件,則實(shí)數(shù)m的最大值為

A. -1 B. 1 C. D. 2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知平面平面為線段的中點(diǎn), ,四邊形為邊長為1的正方形,平面平面,,為棱的中點(diǎn).

(1)若為線上的點(diǎn),且直線平面,試確定點(diǎn)的位置;

(2)求平面與平面所成的銳二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案