【題目】如圖,的邊邊所在直線的方程為 滿足,點(diǎn)邊所在直線上且滿足

(I)求邊所在直線的方程;

(II)求的外接圓的方程;

(III)若點(diǎn)的坐標(biāo)為,其中為正整數(shù)。試討論在的外接圓上是否存在點(diǎn)使得成立?說(shuō)明理由.

【答案】(I);(II);(III)詳見(jiàn)解析.

【解析】

(I)由又上且,AC⊥AB,結(jié)合T點(diǎn)坐標(biāo)及直線AB的斜率,可求出AC邊所在直線的方程;(II)結(jié)合(I)中結(jié)論,直線AB,AC的方程聯(lián)立,得點(diǎn)A;由B、C兩點(diǎn)關(guān)于M點(diǎn)對(duì)稱(chēng),得△ABC的外接圓是以M為圓心,以AM為半徑的圓;(III)若在△ABC的外接圓上存在點(diǎn)P,使得|PN|=|PT|成立,則P為線段NT的垂直平分線L與圓M的公共點(diǎn).所以當(dāng)L與圓M相離時(shí),不存在點(diǎn)P;當(dāng)L與圓M相交或相切時(shí)則存在點(diǎn)P.設(shè)N點(diǎn)坐標(biāo),點(diǎn)N到直線距離d與半徑r=比較,即可得到結(jié)論.

解: (I)

,又上 ∴,,

邊所在直線的方程為,,所以直線的斜率為

又因?yàn)辄c(diǎn)在直線上,

所以邊所在直線的方程為.即

(II)的交點(diǎn)為,所以由解得點(diǎn)的坐標(biāo)為,

斜邊上的中點(diǎn)。即為外接圓的圓心

外接圓的方程為:

(III)由,知的斜率為,線段的中點(diǎn)為

線段的垂直平分線

的圓心到直線的距離為

i)當(dāng)時(shí),,而,由,此時(shí)直線L與圓M相交,存在滿足條件的點(diǎn)P.

ii)當(dāng)時(shí),此時(shí)直線與圓相交,存在滿足條件的點(diǎn)P.

iii)當(dāng)時(shí),

,此時(shí)直線與圓相離,不存在滿足條件的點(diǎn).

綜上:當(dāng)n=12時(shí),存在點(diǎn)P,當(dāng)n時(shí),不存在點(diǎn)P.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,P為正方體ABCD﹣A1B1C1D1中AC1與BD1的交點(diǎn),則△PAC在該正方體各個(gè)面上的射影可能是(
A.①②③④
B.①③
C.①④
D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn(n∈N*),且滿足: ①|(zhì)a1|≠|(zhì)a2|;
②r(n﹣p)Sn+1=(n2+n)an+(n2﹣n﹣2)a1 , 其中r,p∈R,且r≠0.
(1)求p的值;
(2)數(shù)列{an}能否是等比數(shù)列?請(qǐng)說(shuō)明理由;
(3)求證:當(dāng)r=2時(shí),數(shù)列{an}是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線C:y2=2px(p>0)和動(dòng)直線l:y=kx+b(k,b是參變量,且k≠0.b≠0)相交于A(x1 , y2),N)x2 , y2)兩點(diǎn),直角坐標(biāo)系原點(diǎn)為O,記直線OA,OB的斜率分別為kOAkOB= 恒成立,則當(dāng)k變化時(shí)直線l恒經(jīng)過(guò)的定點(diǎn)為(
A.(﹣ p,0)
B.(﹣2 p,0)
C.(﹣ ,0)
D.(﹣ ,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且Sn=2an﹣n.
(Ⅰ)證明數(shù)列{an+1}是等比數(shù)列,求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)記bn= + ,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店為了更好地規(guī)劃某種商品進(jìn)貨的量,該商店從某一年的銷(xiāo)售數(shù)據(jù)中,隨機(jī)抽取了組數(shù)據(jù)作為研究對(duì)象,如下圖所示((噸)為該商品進(jìn)貨量, (天)為銷(xiāo)售天數(shù)):

2

3

4

5

6

8

9

11

1

2

3

3

4

5

6

8

Ⅰ)根據(jù)上表數(shù)據(jù)在下列網(wǎng)格中繪制散點(diǎn)圖;

Ⅱ)根據(jù)上表提供的數(shù)據(jù),求出關(guān)于的線性回歸方程;

(Ⅲ)在該商品進(jìn)貨量(噸)不超過(guò)6(噸)的前提下任取兩個(gè)值,求該商品進(jìn)貨量x(噸)恰有一個(gè)值不超過(guò)3(噸)的概率.

參考公式和數(shù)據(jù):,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為4的長(zhǎng)方形ABCD中,動(dòng)圓Q的半徑為1,圓心Q在線段BC(含端點(diǎn))上運(yùn)動(dòng),P是圓Q上及內(nèi)部的動(dòng)點(diǎn),設(shè)向量 =m +n (m,n為實(shí)數(shù)),則m+n的取值范圍是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=cos(2x+φ),且 f(x)dx=0,則下列說(shuō)法正確的是(
A.f(x)的一條對(duì)稱(chēng)軸為x=
B.存在φ使得f(x)在區(qū)間[﹣ , ]上單調(diào)遞減
C.f(x)的一個(gè)對(duì)稱(chēng)中心為( ,0)
D.存在φ使得f(x)在區(qū)間[ , ]上單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C: =1,直線l過(guò)點(diǎn)M(﹣1,0),與橢圓C交于A,B兩點(diǎn),交y軸于點(diǎn)N.
(1)設(shè)MN的中點(diǎn)恰在橢圓C上,求直線l的方程;
(2)設(shè) , ,試探究λ+μ是否為定值,若是,求出該定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案