已知直線l⊥平面α,直線m?平面β,有下面四個命題:①α∥β⇒l⊥m;②α⊥β⇒l∥m;③l∥m⇒α⊥β;④l⊥m⇒α∥β.
其中正確的命題(  )
A.①②B.②④C.①③D.③④
C
對于①,由l⊥α,α∥β⇒l⊥β,又因為直線m?平面β,所以l⊥m,故①正確,同理可得③正確;②與④不正確,故選C.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

A是△BCD平面外的一點,E,F(xiàn)分別是BC,AD的中點.
(1)求證:直線EF與BD是異面直線;
(2)若AC⊥BD,AC=BD,求EF與BD所成的角.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,直四棱柱底面直角梯形,,,是棱上一點,,,,.
(1)求直四棱柱的側(cè)面積和體積;
(2)求證:平面.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在四棱錐P—ABCD中,側(cè)面PAD是正三角形,且垂直于底面ABCD,底面ABCD是邊長為2的菱形,∠BAD=60°,M為PC的中點.
(1)求證:PA//平面BDM;
(2)求直線AC與平面ADM所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在圓錐中,已知的直徑的中點.

(1)證明:
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在五面體ABCDEF中,四邊形ABCD是矩形,DE⊥平面ABCD.

(1)求證:AB∥EF;
(2)求證:平面BCF⊥平面CDEF.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在棱長為1的正方體AC1中,E為AB的中點,點P為側(cè)面BB1C1C內(nèi)一動點(含邊界),若動點P始終滿足PE⊥BD1,則動點P的軌跡的長度為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下列命題正確的是(     ).
A.a(chǎn)//b, a⊥αa⊥b  B.a(chǎn)⊥α, b⊥αa//b
C.a(chǎn)⊥α, a⊥bb//α  D.a(chǎn)//α,a⊥bb⊥α

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

類比平面內(nèi) “垂直于同一條直線的兩條直線互相平行”的性質(zhì),可推出空間下列結(jié)論:
①垂直于同一條直線的兩條直線互相平行  ②垂直于同一個平面的兩條直線互相平行
③垂直于同一條直線的兩個平面互相平行   ④垂直于同一個平面的兩個平面互相平行
則正確的結(jié)論是 ( )
A.①② B.②③C.③④ D.①④

查看答案和解析>>

同步練習冊答案