【題目】已知a,b,c分別為△ABC內(nèi)角A,B,C的對邊,且
(1)求A的值.
(2)若a=2,△ABC的面積為 ,求b,c的值.

【答案】
(1)解:因為 ,

所以 ,

又因為0<B+C<π,

所以

因為A+B+C=π,

所以


(2)解:因為△ABC的面積S= = ,

所以bc=4,

由余弦定理a2=b2+c2﹣2bccosA,得c2+b2=8,

聯(lián)立 ,解得 ,

因為b>0,c>0,

所以b=c=2.


【解析】(1)由已知可得 ,結(jié)合范圍0<B+C<π,可求 ,結(jié)合三角形內(nèi)角和定理可求A的值.(2)利用三角形面積公式可求bc=4,由余弦定理得c2+b2=8,聯(lián)立即可得解.
【考點精析】根據(jù)題目的已知條件,利用正弦定理的定義和余弦定理的定義的相關(guān)知識可以得到問題的答案,需要掌握正弦定理:;余弦定理:;;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=(ax﹣1)(x﹣1).
(1)若不等式f(x)<0的解集為{x|1<x<2},求實數(shù)a的值;
(2)當a>0時,解關(guān)于x的不等式f(x)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若定義在區(qū)間D上的函數(shù)y=f(x)滿足:對x∈D,M∈R,使得|f(x)|≤M恒成立,則稱函數(shù)y=f(x)在區(qū)間D上有界.則下列函數(shù)中有界的是:
①y=sinx;② ;③y=tanx;④ ;
⑤y=x3+ax2+bx+1(﹣4≤x≤4),其中a,b∈R.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】極坐標與參數(shù)方程

在直角坐標系,直線的參數(shù)方程是為參數(shù)).在以為極點, 軸正半軸為極軸建立極坐標系中,曲線 .

(1)當, 時,判斷直線與曲線的位置關(guān)系;

(2)當時,若直線與曲相交于, 兩點,設(shè),且,求直線的傾斜角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x,y的方程C:x2+y2﹣2x﹣4y+m=0.
(1)當m為何值時,方程C表示圓.
(2)若圓C與直線l:x+2y﹣4=0相交于M,N兩點,且MN= ,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】要使g(x)=3x+1+t的圖象不經(jīng)過第二象限,則t的取值范圍為( )
A.t≤﹣1
B.t<﹣1
C.t≤﹣3
D.t≥﹣3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓為參數(shù)), 上的動點,且滿足為坐標原點),以原點為極點, 軸的正半軸為極軸建立坐標系,點的極坐標為.

(1)求線段的中點的軌跡的普通方程;

(2)利用橢圓的極坐標方程證明為定值,并求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四組函數(shù)中,表示相等函數(shù)的一組是(
A.f(x)=|x|,
B. ,
C. ,g(x)=x+1
D. ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義域與值域都是[﹣2,2]的兩個函數(shù)f(x)、g(x)的圖象如圖所示(實線部分),則下列四個命題中,
①方程f[g(x)]=0有6個不同的實數(shù)根;
②方程g[f(x)]=0有4個不同的實數(shù)根;
③方程f[f(x)]=0有5個不同的實數(shù)根;
④方程g[g(x)]=0有3個不同的實數(shù)根;
正確的命題是(

A.②③④
B.①④
C.②③
D.①②③④

查看答案和解析>>

同步練習(xí)冊答案