現(xiàn)有甲、乙兩個項目,對甲項目每投資十萬元,一年后利潤是1.2萬元、1.18萬元、1.17萬元的概率分別為、;已知乙項目的利潤與產(chǎn)品價格的調(diào)整有關(guān),在每次調(diào)整中價格下降的概率都是p(0<p<1),設(shè)乙項目產(chǎn)品價格在一年內(nèi)進(jìn)行2次獨立的調(diào)整,記乙項目產(chǎn)品價格在一年內(nèi)的下降次數(shù)為ξ,對乙項目每投資十萬元,ξ取0、1、2時,一年后相應(yīng)利潤是1.3萬元、1.25萬元、0.2萬元。隨機(jī)變量ξ1、ξ2分別表示對甲、乙兩項目各投資十萬元一年后的利潤。
(1)求ξ1、ξ2的概率分布和數(shù)學(xué)期望Eξ1、Eξ2;
(2)當(dāng)Eξ1<Eξ2時,求p的取值范圍。
解:(1)ξ1的概率分布為

1=1.2×+1.18×+1.17×=1.18;
由題設(shè)ξ2~B(2,P),即ξ2的概率分布為

∴ξ2的數(shù)學(xué)期望為Eξ2=1.3×(1-p)2+1.25×2p(1-p)+0.2×p2=-p2-0.1p+1.3。
(2)由
整理得
解得
因為
所以時,p的取值范圍是。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

現(xiàn)有甲、乙兩個項目,對甲項目每投資十萬元,一年后利潤是1.2萬元、1.18萬元、1.17萬元的概率分別為
1
6
、
1
2
1
3
;已知乙項目的利潤與產(chǎn)品價格的調(diào)整有關(guān),在每次調(diào)整中價格下降的概率都是P(0<P<1),設(shè)乙項目產(chǎn)品價格在一年內(nèi)進(jìn)行2次獨立的調(diào)整,記乙項目產(chǎn)品價格在一年內(nèi)的下降次數(shù)為ζ,對乙項目每投資十萬元,ξ取0、1、2時,一年后相應(yīng)利潤是1.3萬元、1.25萬元、0.2萬元.隨機(jī)變量ξ1、ξ2分別表示對甲、乙兩項目各投資十萬元一年后的利潤.
(I)求ξ1、ξ2的概率分布和數(shù)學(xué)期望Eξ1、Eξ2;
(II)當(dāng)Eξ1<Eξ2時,求P的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年長沙市模擬理)(12分)現(xiàn)有甲、乙兩個項目,對甲項目每投資十萬元,一年后利潤是1.2萬元,1.18萬元,1.17萬元的概率分別為;已知乙項目的利潤與產(chǎn)品價格調(diào)整有關(guān),在每次調(diào)整中價格下降的概率為P(0<P<1),記乙項目產(chǎn)品價格在一年內(nèi)進(jìn)行2次獨立調(diào)整,設(shè)乙項目產(chǎn)品價格在一年內(nèi)的下降次數(shù)為,對乙項目再投資十萬元,以0,1,2時產(chǎn)品價格在一年后的利潤是1.3萬元,1.25萬元,0.2萬元。隨機(jī)變量1,2分別表示甲、乙兩項目各投資十萬元一年后的利潤。

(1)求1,2的概率分布列和數(shù)學(xué)期望E1,E2

(2)當(dāng)E1,E2時,求P的范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

現(xiàn)有甲、乙兩個項目,對甲項目每投資十萬元,一年后利潤是1.2萬元、1.18萬元、1.17萬元的概率分別為、;已知乙項目的利潤與產(chǎn)品價格的調(diào)整有關(guān),在每次調(diào)整中價格下降的概率都是,設(shè)乙項目產(chǎn)品價格在一年內(nèi)進(jìn)行2次獨立的調(diào)整,記乙項目產(chǎn)品價格在一年內(nèi)的下降次數(shù)為,對乙項目每投資十萬元, 取0、1、2時, 一年后相應(yīng)利潤是1.3萬元、1.25萬元、0.2萬元.隨機(jī)變量、分別表示對甲、乙兩項目各投資十萬元一年后的利潤.

(I)  求、的概率分布和數(shù)學(xué)期望、;

(II)  當(dāng)時,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

現(xiàn)有甲、乙兩個項目,對甲項目每投資十萬元,一年后利潤是1.2萬元、1.18萬元、1.17萬元的概率分別為、、;已知乙項目的利潤與產(chǎn)品價格的調(diào)整有關(guān),在每次調(diào)整中價格下降的概率都是,設(shè)乙項目產(chǎn)品價格在一年內(nèi)進(jìn)行2次獨立的調(diào)整,記乙項目產(chǎn)品價格在一年內(nèi)的下降次數(shù)為,對乙項目每投資十萬元, 取0、1、2時, 一年后相應(yīng)利潤是1.3萬元、1.25萬元、0.2萬元.隨機(jī)變量、分別表示對甲、乙兩項目各投資十萬元一年后的利潤.

(I)  求、的概率分布和數(shù)學(xué)期望;

(II)  當(dāng)時,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆福建省高二下學(xué)期期末理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分13分)

現(xiàn)有甲、乙兩個項目,對甲項目投資十萬元,一年后利潤是1.2萬元、1.18萬元、1.17萬元的概率分別為、、;已知乙項目的利潤與產(chǎn)品價格的調(diào)整有關(guān),在每次調(diào)整中價格下降的概率都是,設(shè)乙項目產(chǎn)品價格在一年內(nèi)進(jìn)行2次獨立的調(diào)整,記乙項目產(chǎn)品價格在一年內(nèi)的下降次數(shù)為,對乙項目投資十萬元, 取0、1、2時, 一年后相應(yīng)利潤是1.3萬元、1.25萬元、0.2萬元.隨機(jī)變量、分別表示對甲、乙兩項目各投資十萬元一年后的利潤.

(I) 求、的概率分布和數(shù)學(xué)期望;

(II)當(dāng)時,求的取值范圍.

 

查看答案和解析>>

同步練習(xí)冊答案