精英家教網 > 高中數學 > 題目詳情
設雙曲線的漸近線方程為,則的值為( 。
A.4B.3C.2D.1
C
雙曲線的漸近線方程為,所以,故選C
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知B(-6,0),C(6,0)是三角形ABC的兩個頂點,內角A、B、C滿足,求頂點A運動的軌跡方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

拋物線的焦點到雙曲線的漸近線的距離為(   )
A.1B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

.已知點P在曲線C1上,點Q在曲線C2:(x-5)2+y2=1上,點R在曲線C3:(x+5)2+y2=1上,則 | PQ |-| PR | 的最大值是
A.6B.8C.10D.12

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分15分)如圖,在中,點的坐標為,點軸上,點軸的正半軸上,,在的延長線上取一點,使.
(Ⅰ)當點軸上移動時,求動點的軌跡;
(Ⅱ)自點引直線與軌跡交于不同的兩點、,點關于軸的對稱點
記為,設,點的坐標為.
(1)求證:
(2)若,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知定點,定直線,動點
(Ⅰ)、若M到點A的距離與M到直線l的距離之比為,試求M的軌跡曲線C1的方程.
(Ⅱ)、若曲線C2是以C1的焦點為頂點,且以C1的頂點為焦點,試求曲線C2的方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分13分)分別以雙曲線的焦點為頂點,以雙曲線G的頂點為焦點作橢圓C。
(Ⅰ)求橢圓C的方程;
(Ⅱ)設點P的坐標為,在y軸上是否存在定點M,過點M且斜率為k的動直線 交橢圓于A、B兩點,使以AB為直徑的圓恒過點P,若存在,求出M的坐標;若不存在,說明理由。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分14分)
在平面直角坐標系中,N為圓C:上的一動點,點D(1,0),點M是DN的中點,點P在線段CN上,且.
(Ⅰ)求動點P表示的曲線E的方程;
(Ⅱ)若曲線E與x軸的交點為,當動點P與A,B不重合時,設直線的斜率分別為,證明:為定值;

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

如圖,過拋物線焦點的直線依次交拋物線與圓于點A、B、C、D,則的值是_____

查看答案和解析>>

同步練習冊答案