設(shè)Sn為等差數(shù)列{a n}的前n項(xiàng)和,已知a 9 =-2,S 8 =2.
(1)求首項(xiàng)a1和公差d的值;
(2)當(dāng)n為何值時(shí),Sn最大?并求出Sn的最大值.

(1) (2)時(shí),有最大值為5

解析試題分析:(1)依題意得:,解得              6分
(2)
,時(shí),有最大值為5            12分
考點(diǎn):本題考查了等差數(shù)列的通項(xiàng)公式及求和
點(diǎn)評(píng):解決此類除了要求學(xué)生掌握等差數(shù)列的通項(xiàng)公式及前n項(xiàng)和公式外,還要掌握數(shù)列的函數(shù)特征求解最值問(wèn)題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在數(shù)列中,,,對(duì)任意成立,令,且是等比數(shù)列.
(1)求實(shí)數(shù)的值;
(2)求數(shù)列的通項(xiàng)公式;
(3)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知無(wú)窮數(shù)列中,、 、、構(gòu)成首項(xiàng)為2,公差為-2的等差數(shù)列,、、,構(gòu)成首項(xiàng)為,公比為的等比數(shù)列,其中.
(1)當(dāng),,時(shí),求數(shù)列的通項(xiàng)公式;
(2)若對(duì)任意的,都有成立.
①當(dāng)時(shí),求的值;
②記數(shù)列的前項(xiàng)和為.判斷是否存在,使得成立?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)為數(shù)列的前項(xiàng)和,對(duì)任意的,都有(為正常數(shù)).
(1)求證:數(shù)列是等比數(shù)列;
(2)數(shù)列滿足求數(shù)列的通項(xiàng)公式;
(3)在滿足(2)的條件下,求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知等差數(shù)列的公差,它的前項(xiàng)和為,若,且成等比數(shù)列.(1) 求數(shù)列的通項(xiàng)公式;(2)設(shè)數(shù)列的前項(xiàng)和為,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知等差數(shù)列中,,其前n項(xiàng)和滿足=
(1)求實(shí)數(shù)c的值
(2)求數(shù)列的通項(xiàng)公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知等差數(shù)列滿足:,的前項(xiàng)和為。
(1)求;
(2)令(其中為常數(shù),且),求證數(shù)列為等比數(shù)列。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知等差數(shù)列{an}的前n項(xiàng)的和記為Sn.如果,
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求Sn的最小值及其相應(yīng)的n的值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(Ⅰ)設(shè)函數(shù)的圖像的頂點(diǎn)的縱坐標(biāo)構(gòu)成數(shù)列,求證:為等差數(shù)列;
(Ⅱ)設(shè)函數(shù)的圖像的頂點(diǎn)到軸的距離構(gòu)成數(shù)列,求的前項(xiàng)和

查看答案和解析>>

同步練習(xí)冊(cè)答案