已知函數(shù)
(1)若函數(shù)的最小值是,且,的值:
(2)若,且在區(qū)間恒成立,試求取范圍;
(1)8     (2)
(1)由已知,且
解得


(2),原命題等價(jià)于恒成立
恒成立
的最小值為0
的最大值為
所以
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若不等式對(duì)任意的上恒成立,則的取值范圍是( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某房地產(chǎn)開(kāi)發(fā)商投資81萬(wàn)元建一座寫(xiě)字樓,第一年需維護(hù)費(fèi)用為1萬(wàn)元,以后每年增加2萬(wàn)元,若把寫(xiě)字樓出租,每年收入租金30萬(wàn)元.
(1)開(kāi)發(fā)商最早在第幾年獲取純利潤(rùn)?
(2)若干年后開(kāi)發(fā)商為了投資其它項(xiàng)目,有兩種處理方案:①純利潤(rùn)最大時(shí),以10萬(wàn)元出售該樓;②年平均利潤(rùn)最大時(shí)以46萬(wàn)元出售該樓.問(wèn)哪種方案更優(yōu)?并說(shuō)明理由?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

加工爆米花時(shí),爆開(kāi)且不糊的粒數(shù)占加工總粒數(shù)的百分比稱為“可食用率”.在特定條件下,可食用率
與加工時(shí)間(單位:分鐘)滿足的函數(shù)關(guān)系、是常數(shù)),下圖記錄了三次實(shí)
驗(yàn)的數(shù)據(jù).根據(jù)上述函數(shù)模型和實(shí)驗(yàn)數(shù)據(jù),可以得到最佳加工時(shí)間為(   )
A.分鐘 B.分鐘C.分鐘D.分鐘

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù)是定義在上的奇函數(shù),當(dāng)時(shí),,若,,則實(shí)數(shù)的取值范圍為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若函數(shù)上單調(diào)遞增,則實(shí)數(shù)的取值范圍為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若函數(shù)為定義域上的單調(diào)函數(shù),且存在區(qū)間(其中),使得當(dāng)時(shí),的取值范圍恰為,則稱函數(shù)上的正函數(shù).若函數(shù)上的正函數(shù),則實(shí)數(shù)的取值范圍為(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

臺(tái)風(fēng)中心從A地以每小時(shí)20千米的速度向東北方向移動(dòng),離臺(tái)風(fēng)中心30千米內(nèi)的地區(qū)為危險(xiǎn)區(qū),城市B在A的正東40千米處,B城市處于危險(xiǎn)區(qū)內(nèi)的時(shí)間為(  )
A.0.5小時(shí)B.1小時(shí)C.1.5小時(shí)D.2小時(shí)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知集合A=[0,8],集合B=[0,4],則下列對(duì)應(yīng)關(guān)系中,不能看作從A到B的映射的是________.(填寫(xiě)序號(hào))
①f:x→y=x     ②f:x→y=x      ③f:x→y=x     ④f:x→y=x

查看答案和解析>>

同步練習(xí)冊(cè)答案