已知△ABC的頂點(diǎn)B、C在橢圓
x2
3
+y2=1上,頂點(diǎn)A是橢圓的一個(gè)焦點(diǎn),且橢圓的另外一個(gè)焦點(diǎn)在BC邊上,則△ABC的周長(zhǎng)是
4
3
4
3
分析:設(shè)另一個(gè)焦點(diǎn)為F,根據(jù)橢圓的定義可知|AB|+|BF|=2a,|AC|+|FC|=2a最后把這四段線段相加求得△ABC的周長(zhǎng).
解答:解:橢圓
x2
3
+y2=1的a=
3

設(shè)另一個(gè)焦點(diǎn)為F,則根據(jù)橢圓的定義可知
|AB|+|BF|=2a=2
3
,|AC|+|FC|=2a=2
3

∴三角形的周長(zhǎng)為:|AB|+|BF|+|AC|+|FC|=4
3

故答案為:4
3
點(diǎn)評(píng):本題主要考查數(shù)形結(jié)合的思想和橢圓的基本性質(zhì),解題的關(guān)鍵是利用橢圓的第一定義.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的頂點(diǎn)B(-1,-3),AB邊上的高CE所在直線的方程為x-3y-1=0,BC邊上中線AD所在直線的方程為8x+9y-3=0.求直線AC的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•蘭州模擬)已知△ABC的頂點(diǎn)B、C在橢圓
x2
12
+
y2
16
=1
上,頂點(diǎn)A是橢圓的一個(gè)焦點(diǎn),且橢圓的另一個(gè)焦點(diǎn)在BC邊上,則△ABC的周長(zhǎng)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•長(zhǎng)寧區(qū)二模)已知△ABC的頂點(diǎn)B、C在橢圓
x2
3
+y2=1上,且BC邊經(jīng)過(guò)橢圓的一個(gè)焦點(diǎn),頂點(diǎn)A是橢圓的另一個(gè)焦點(diǎn),則△ABC的周長(zhǎng)是
4
3
4
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的頂點(diǎn)B,C在橢圓x2+3y2=3上,頂點(diǎn)A是橢圓的一個(gè)焦點(diǎn),且橢圓的另一個(gè)焦點(diǎn)在BC邊上,則△ABC的周長(zhǎng)是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案