如圖,在正三棱柱中,點(diǎn)在邊上,
(1)求證:平面;
(2)如果點(diǎn)是的中點(diǎn),求證://平面.
(1)詳見(jiàn)解析,(2)詳見(jiàn)解析.
解析試題分析:(1)證明線面垂直,關(guān)鍵證明線線垂直.已知所以還需再找一組線線垂直. 平面.(2)證明線面平行,關(guān)鍵證明線線平行.本題有中點(diǎn)條件,所以從中位線尋找平行條件. 因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/de/9/zagts2.png" style="vertical-align:middle;" />平面,所以從而是中點(diǎn).連接//
//平面.
證:(1)
平面. 7分
(2) 因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/de/9/zagts2.png" style="vertical-align:middle;" />平面,所以
從而是中點(diǎn).連接
//
//平面. 14分
考點(diǎn):線面平行判定定理,線面垂直判定定理
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知的直徑AB=3,點(diǎn)C為上異于A,B的一點(diǎn),平面ABC,且VC=2,點(diǎn)M為線段VB的中點(diǎn).
(1)求證:平面VAC;
(2)若AC=1,求直線AM與平面VAC所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,四棱錐的底面邊長(zhǎng)為8的正方形,四條側(cè)棱長(zhǎng)均為.點(diǎn)分別是棱上共面的四點(diǎn),平面平面,平面.
證明:
若,求四邊形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知四棱錐,底面為矩形,側(cè)棱,其中,為側(cè)棱上的兩個(gè)三等分點(diǎn),如下圖所示.
(1)求證:;
(2)求異面直線與所成角的余弦值;
(3)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(12分)(2011•湖北)如圖,已知正三棱柱ABC﹣A1B1C1的底面邊長(zhǎng)為2,側(cè)棱長(zhǎng)為3,點(diǎn)E在側(cè)棱AA1上,點(diǎn)F在側(cè)棱BB1上,且AE=2,BF=.
(I) 求證:CF⊥C1E;
(II) 求二面角E﹣CF﹣C1的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,是邊長(zhǎng)為2的正方形,平面,,,且.
(1)求證:平面;
(2)求證:平面平面;
(3)求多面體的體積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,長(zhǎng)方體中,,G是上的動(dòng)點(diǎn)。
(l)求證:平面ADG;
(2)判斷與平面ADG的位置關(guān)系,并給出證明;
(3)若G是的中點(diǎn),求二面角G-AD-C的大。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com