設(shè)函數(shù)f(x)=
3
x
+lnx
,則(  )
分析:求出函數(shù)f(x)=
3
x
+lnx
的導(dǎo)函數(shù),由導(dǎo)函數(shù)的零點(diǎn)把函數(shù)的定義域(0,+∞)分為兩段,并根據(jù)導(dǎo)函數(shù)的符號(hào)判斷原函數(shù)在各段內(nèi)的單調(diào)性,從而得到正確答案.
解答:解:函數(shù)f(x)=
3
x
+lnx
的定義域?yàn)椋?,+∞).
f(x)=
3
x
+lnx
,得:f(x)=(
3
x
+lnx)=-
3
x2
+
1
x
=
x-3
x2

當(dāng)x∈(0,3)時(shí),f(x)<0,所以f(x)在(0,3)上為減函數(shù).
當(dāng)x∈(3,+∞)時(shí),f(x)>0,所以f(x)在(3,+∞)上為增函數(shù).
所以,x=3為函數(shù)f(x)的極小值點(diǎn).
故選D.
點(diǎn)評(píng):本題主要考查利用導(dǎo)數(shù)研究函數(shù)的極值,屬于基礎(chǔ)知識(shí),是對(duì)基本運(yùn)算的考查.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
3x+4
x2+1
,g(x)=
6a2
x+a
,a
1
3

(1)求函數(shù)f(x)的極大值與極小值;
(2)若對(duì)函數(shù)的x0∈[0,a],總存在相應(yīng)的x1,x2∈[0,a],使得g(x1)≤f(x0)≤g(x2)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
3x,x≤0
log3x,x>0
,則f[f(-1)]=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
3x+1
x2-1
-
2
x-1
(x≠1)
a(x=1)
在x=1處連續(xù),則a的值為( 。
A、
1
2
B、
1
4
C、-
1
3
D、-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
3x,x∈(-∞,1]
log81x,x∈(1,+∞).
f(f(
1
4
))
的值為
1
16
1
16

查看答案和解析>>

同步練習(xí)冊(cè)答案