【題目】用簡單隨機(jī)抽樣方法從含有6個(gè)個(gè)體的總體中,抽取一個(gè)容量為2的樣本,某一個(gè)體a“第一次被抽到的概率”、“第二次被抽到的概率”、“在整個(gè)抽樣過程中被抽到”的概率分別是
.
【答案】 , ,
【解析】解:從含有6個(gè)個(gè)體的總體中,抽取一個(gè)容量為2的樣本,
在整個(gè)抽樣過程中被抽到的概率是= ,
一個(gè)體a第一次被抽到,表示從6個(gè)個(gè)體中抽一個(gè)個(gè)體,
被抽到的概率是 ,
第二次被抽到表示第一次未被抽到且第二次抽到,
這是一個(gè)相互獨(dú)立事件的概率,
根據(jù)相互獨(dú)立事件同時(shí)發(fā)生的概率知P=,
所以答案是:;;
【考點(diǎn)精析】利用相互獨(dú)立事件對題目進(jìn)行判斷即可得到答案,需要熟知事件A(或B)是否發(fā)生對事件B(或A)發(fā)生的概率沒有影響,這樣的兩個(gè)事件叫做相互獨(dú)立事件.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: ()的上、下兩個(gè)焦點(diǎn)分別為, ,過的直線交橢圓于, 兩點(diǎn),且的周長為8,橢圓的離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知為坐標(biāo)原點(diǎn),直線: 與橢圓有且僅有一個(gè)公共點(diǎn),點(diǎn), 是直線上的兩點(diǎn),且, ,求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={(x,y)|x2+(y+1)2≤1},B={(x,y)| x+y=4m},命題P:A∩B=,命題q:直線 + =1在兩坐標(biāo)軸上的截距為正.
(1)若命題P為真命題,求實(shí)數(shù)m的取值范圍;
(2)若“p∨q”為真,“p∧q”為假,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠的A、B、C三個(gè)不同車間生產(chǎn)同一產(chǎn)品的數(shù)量(單位:件)如表所示.質(zhì)檢人員用分層抽樣的方法從這些產(chǎn)品中共抽取6件樣品進(jìn)行檢測.
車間 | A | B | C |
數(shù)量 | 50 | 150 | 100 |
(1)求這6件樣品中來自A、B、C各車間產(chǎn)品的數(shù)量;
(2)若在這6件樣品中隨機(jī)抽取2件進(jìn)行進(jìn)一步檢測,求這2件商品來自相同車間的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖四棱錐P﹣ABCD中,平面PAD⊥平面ABCD,AB∥CD,∠ABC=90°,且CD=2,AB=BC=PA=1,PD= .
(1)求三棱錐A﹣PCD的體積;
(2)問:棱PB上是否存在點(diǎn)E,使得PD∥平面ACE?若存在,求出 的值,并加以證明;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一盒中裝有各色球12只,其中5個(gè)紅球,4個(gè)黑球,2個(gè)白球,1個(gè)綠球;從中隨機(jī)取出1球.求:
(1)取出的1球是紅球或黑球的概率;
(2)取出的1球是紅球或黑球或白球的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在正方體ABCD﹣A1B1C1D1中,點(diǎn)M是平面A1B1C1D1內(nèi)一點(diǎn),且BM∥平面ACD1 , 則tan∠DMD1的最大值為( )
A.
B.1
C.2
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖△ABC是等腰三角形,BA=BC,DC⊥平面ABC,AE∥DC,若AC=2且BE⊥AD,則( )
A.AB+BC有最大值
B.AB+BC有最小值
C.AE+DC有最大值
D.AE+DC有最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在棱長為ɑ 的正方體ABCD﹣A1B1C1D1中,E、F、G分別是CB.CD.CC1的中點(diǎn).
(1)求直線 A1C與平面ABCD所成角的正弦的值;
(2)求證:平面A B1D1∥平面EFG.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com