【題目】在直角坐標系中,已知點,的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為.

1)求的普通方程和的直角坐標方程;

2)設曲線與曲線相交于,兩點,求的值.

【答案】12

【解析】

1)消去參數(shù)方程中的參數(shù),求得的普通方程,利用極坐標和直角坐標的轉(zhuǎn)化公式,求得的直角坐標方程.

2)求得曲線的標準參數(shù)方程,代入的直角坐標方程,寫出韋達定理,根據(jù)直線參數(shù)中參數(shù)的幾何意義,求得的值.

1)由的參數(shù)方程為參數(shù)),消去參數(shù)可得,

由曲線的極坐標方程為,得

所以的直角坐方程為,即.

2)因為在曲線上,

故可設曲線的參數(shù)方程為為參數(shù)),

代入化簡可得.

,對應的參數(shù)分別為,,則,,

所以.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若恒成立,求實數(shù)的最大值;

(2)在(1)成立的條件下,正實數(shù)滿足,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2019冠狀病毒。CoronaVirus Disease2019COVID-19))是由新型冠狀病毒(2019-nCoV)引發(fā)的疾病,目前全球感染者以百萬計,我國在黨中央、國務院、中央軍委的堅強領導下,已經(jīng)率先控制住疫情,但目前疫情防控形勢依然嚴峻,湖北省中小學依然延期開學,所有學生按照停課不停學的要求,居家學習.小李同學在居家學習期間,從網(wǎng)上購買了一套高考數(shù)學沖刺模擬試卷,快遞員計劃在下午400500之間送貨到小區(qū)門口的快遞柜中,小李同學父親參加防疫志愿服務,按規(guī)定,他換班回家的時間在下午430500,則小李父親收到試卷無需等待的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,某大型廠區(qū)有三個值班室,值班室在值班室的正北方向千米處,值班室在值班室的正東方向千米處.

1)保安甲沿從值班室出發(fā)行至點處,此時,求的距離;

2)保安甲沿從值班室出發(fā)前往值班室,保安乙沿從值班室出發(fā)前往值班室,甲乙同時出發(fā),甲的速度為千米/小時,乙的速度為千米/小時,若甲乙兩人通過對講機聯(lián)系,對講機在廠區(qū)內(nèi)的最大通話距離為千米(含千米),試問有多長時間兩人不能通話?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐ABCD中,點EBD上,EAEBECED,BDCD,△ACD為正三角形,點M,N分別在AECD上運動(不含端點),且AMCN,則當四面體CEMN的體積取得最大值時,三棱錐ABCD的外接球的表面積為_____.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)若的極值點,求a的值及的單調(diào)區(qū)間;

2)若對任意,不等式成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,在邊長為2的等邊中,分別為邊的中點,將AED沿折起,使得 , ,得到如圖2的四棱錐A-BCDE,連結(jié),且交于點

1)求證:平面;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】自由購是通過自助結(jié)算方式購物的一種形式. 某大型超市為調(diào)查顧客使用自由購的情況,隨機抽取了100人,統(tǒng)計結(jié)果整理如下:

20以下

70以上

使用人數(shù)

3

12

17

6

4

2

0

未使用人數(shù)

0

0

3

14

36

3

0

(Ⅰ)現(xiàn)隨機抽取 1 名顧客,試估計該顧客年齡在且未使用自由購的概率;

(Ⅱ)從被抽取的年齡在使用自由購的顧客中,隨機抽取3人進一步了解情況,用表示這3人中年齡在的人數(shù),求隨機變量的分布列及數(shù)學期望;

(Ⅲ)為鼓勵顧客使用自由購,該超市擬對使用自由購的顧客贈送1個環(huán)保購物袋.若某日該超市預計有5000人購物,試估計該超市當天至少應準備多少個環(huán)保購物袋.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國古代勞動人民在筑城、筑堤、挖溝、挖渠、建倉、建囤等工程中,積累了豐富的經(jīng)驗,總結(jié)出了一套有關體積、容積計算的方法,這些方法以實際問題的形式被收入我國古代數(shù)學名著《九章算術》中.《九章算術》將底面為長方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬,如圖所示的陽馬三視圖,則它的體積為(

A.B.1C.2D.3

查看答案和解析>>

同步練習冊答案