【題目】某校為了鼓勵學生熱心公益,服務社會,成立了“慈善義工社”.2017年12月,該!按壬屏x工社”為學生提供了4次參加公益活動的機會,學生可通過網(wǎng)路平臺報名參加活動.為了解學生實際參加這4次活動的情況,該校隨機抽取100名學生進行調(diào)查,數(shù)據(jù)統(tǒng)計如下表,其中“√”表示參加,“×”表示未參加.

(Ⅰ)從該校所有學生中任取一人,試估計其2017年12月恰參加了2次學校組織的公益活動的概率;

(Ⅱ)若在已抽取的100名學生中,2017年12月恰參加了1次活動的學生比4次活動均未參加的學生多17人,求的值;

(Ⅲ)若學生參加每次公益活動可獲得10個公益積分,試估計該校4000名學生中,2017年12月獲得的公益積分不少于30分的人數(shù).

【答案】(Ⅰ)(Ⅱ) (3)1080

【解析】試題分析:(Ⅰ)利用頻率估計概率進行計算即可;

(Ⅱ)依題意,即可得的值;

(Ⅲ)由即可得解.

試題解析:

解:(Ⅰ)設“從該校所有學生中任取一人,其2017年12月恰有2次參加公益活動”為事件

.

所以從該校所有學生中任取一人,其2017年12月恰有2次參加公益活動的概率為.

(Ⅱ)依題意,

所以.

(Ⅲ).

所以估計該校4000名學生中,12月獲得的公益積分不少于30分的人數(shù)約為1080人.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某讀者協(xié)會為了了解該地區(qū)居民睡前看書的時間情況,從該地區(qū)睡前看書的居民中隨機選取了n人進行調(diào)查,現(xiàn)將調(diào)查結果進行統(tǒng)計得到如圖所示的頻率分布直方圖.則下列說法正確的是(  )

A. 睡前看書時間介于40~50分鐘的頻率為0.03

B. 睡前看書時間低于30分鐘的頻率為0.67

C. 若n=1000,則可估計本次調(diào)查中睡前看書時間介于30~50分鐘的有67人

D. 若n=1000,則可估計本次調(diào)查中睡前看書時間介于20~40分鐘的有600人

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)為定義在R上的偶函數(shù),當x≥0時,有f(x1)=-f(x),且當x∈[0,1)時,f(x)log2(x1),給出下列命題

f(2014)f(2015)0;

函數(shù)f(x)在定義域上是周期為2的函數(shù);

直線yx與函數(shù)f(x)的圖象有2個交點;

函數(shù)f(x)的值域為(1,1)

其中正確的是(  )

A. ①② B. ②③

C. ①④ D. ①②③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點為F,直線x軸的交點為P,與拋物線的交點為Q,且.

(1)求拋物線的方程;

(2)過F的直線l與拋物線相交于A,D兩點,與圓相交于B,C兩點(A,B兩點相鄰),過A,D兩點分別作拋物線的切線,兩條切線相交于點M,求△ABM與△CDM的面積之積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】f(x)是定義域為R的周期函數(shù),最小正周期為2,

f(1x)f(1x),當-1≤x≤0f(x)=-x.

(1)判斷f(x)的奇偶性;

(2)試求出函數(shù)f(x)在區(qū)間[1,2]上的表達式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校為了鼓勵學生熱心公益,服務社會,成立了“慈善義工社”.2017年12月,該!按壬屏x工社”為學生提供了4次參加公益活動的機會,學生可通過網(wǎng)路平臺報名參加活動.為了解學生實際參加這4次活動的情況,該校隨機抽取100名學生進行調(diào)查,數(shù)據(jù)統(tǒng)計如下表,其中“√”表示參加,“×”表示未參加.

根據(jù)表中數(shù)據(jù)估計,該校4000名學生中約有120名這4次活動均未參加.

(Ⅰ)求的值;

(Ⅱ)從該校4000名學生中任取一人,試估計其2017年12月恰參加了2次學校組織的公益活動的概率;

(Ⅲ)已知學生每次參加公益活動可獲得10個公益積分,任取該校一名學生,記該生2017年12月獲得的公益積分為,求隨機變量的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在(0,+∞)上的單調(diào)函數(shù)f(x),x∈(0,+∞),f[f(x)﹣lnx]=1,則方程f(x)﹣f′(x)=1的解所在區(qū)間是 ( 。

A. (2,3) B. C. D. (1,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在如圖所示的五面體中, , ,四邊形為正方形,平面平面

(1)證明:在線段上存在一點,使得平面;

(2)求的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】共享單車因綠色、環(huán)保、健康的出行方式,在國內(nèi)得到迅速推廣.最近,某機構在某地區(qū)隨機采訪了10名男士和10名女士,結果男士、女士中分別有7人、6人表示“經(jīng)常騎共享單車出行”,其他人表示“較少或不選擇騎共享單車出行”.

1從這些男士和女士中各抽取一人,求至少有一人“經(jīng)常騎共享單車出行”的概率;

2從這些男士中抽取一人,女士中抽取兩人,記這三人中“經(jīng)常騎共享單車出行”的人數(shù)為,求的分布列與數(shù)學期望.

查看答案和解析>>

同步練習冊答案