(2012•江蘇)若函數(shù)y=f(x)在x=x0處取得極大值或極小值,則稱x0為函數(shù)y=f(x)的極值點(diǎn).已知a,b是實(shí)數(shù),1和-1是函數(shù)f(x)=x3+ax2+bx的兩個(gè)極值點(diǎn).
(1)求a和b的值;
(2)設(shè)函數(shù)g(x)的導(dǎo)函數(shù)g′(x)=f(x)+2,求g(x)的極值點(diǎn);
(3)設(shè)h(x)=f(f(x))-c,其中c∈[-2,2],求函數(shù)y=h(x)的零點(diǎn)個(gè)數(shù).
分析:(1)求出 導(dǎo)函數(shù),根據(jù)1和-1是函數(shù)的兩個(gè)極值點(diǎn)代入列方程組求解即可.
(2)由(1)得f(x)=x3-3x,求出g′(x),令g′(x)=0,求解討論即可.
  (3)先分|d|=2和|d|<2討論關(guān)于的方程f(x)=d的情況;再考慮函數(shù)y=h(x)的零點(diǎn).
解答:解:(1)由 f(x)=x3+ax2+bx,得 f′(x)=3x2+2ax+b.
∵1和-1是函數(shù)f(x)的兩個(gè)極值點(diǎn),
∴f′(1)=3-2a+b=0,f′(-1)=3+2a+b=0,解得a=0,b=-3.
 (2)由(1)得,f(x)=x3-3x,∴g′(x)=f(x)+2=x3-3x+2=(x-1)2(x+2)=0,解得x1=x2=1,x3=-2.
∵當(dāng)x<-2時(shí),g′(x)<0;當(dāng)-2<x<1時(shí),g′(x)>0,
∴-2是g(x)的極值點(diǎn).
∵當(dāng)-2<x<1或x>1時(shí),g′(x)>0,∴1不是g(x) 的極值點(diǎn).
∴g(x)的極值點(diǎn)是-2.
(3)令f(x)=t,則h(x)=f(t)-c.
 先討論關(guān)于x的方程f(x)=d根的情況,d∈[-2,2]
當(dāng)|d|=2時(shí),由(2 )可知,f(x)=-2的兩個(gè)不同的根為1和一2,注意到f(x)是奇函數(shù),
∴f(x)=2的兩個(gè)不同的根為-1和2.
當(dāng)|d|<2時(shí),∵f(-1)-d=f(2)-d=2-d>0,f(1)-d=f(-2)-d=-2-d<0,
∴一2,-1,1,2 都不是f(x)=d 的根.
由(1)知,f′(x)=3(x+1)(x-1).
①當(dāng)x∈(2,+∞)時(shí),f′(x)>0,于是f(x)是單調(diào)增函數(shù),從而f(x)>f(2)=2.
此時(shí)f(x)=d在(2,+∞)無實(shí)根.
②當(dāng)x∈(1,2)時(shí),f′(x)>0,于是f(x)是單調(diào)增函數(shù).
又∵f(1)-d<0,f(2)-d>0,y=f(x)-d的圖象不間斷,
∴f(x)=d在(1,2 )內(nèi)有唯一實(shí)根.
同理,在(一2,一1)內(nèi)有唯一實(shí)根.
③當(dāng)x∈(-1,1)時(shí),f′(x)<0,于是f(x)是單調(diào)減函數(shù).
又∵f(-1)-d>0,f(1)-d<0,y=f(x)-d的圖象不間斷,
∴f(x)=d在(一1,1 )內(nèi)有唯一實(shí)根.
因此,當(dāng)|d|=2 時(shí),f(x)=d 有兩個(gè)不同的根 x1,x2,滿足|x1|=1,|x2|=2;當(dāng)|d|<2時(shí),f(x)=d 有三個(gè)不同的根x3,x4,x5,滿足|xi|<2,i=3,4,5.
現(xiàn)考慮函數(shù)y=h(x)的零點(diǎn):
( i )當(dāng)|c|=2時(shí),f(t)=c有兩個(gè)根t1,t2,滿足|t1|=1,|t2|=2.而f(x)=t1有三個(gè)不同的根,f(x)=t2有兩個(gè)不同的根,故y=h(x)有5 個(gè)零點(diǎn).
( i i  )當(dāng)|c|<2時(shí),f(t)=c有三個(gè)不同的根t3,t4,t5,滿足|ti|<2,i=3,4,5.
而f(x)=ti有三個(gè)不同的根,故y=h(x)有9個(gè)零點(diǎn).
綜上所述,當(dāng)|c|=2時(shí),函數(shù)y=h(x)有5個(gè)零點(diǎn);當(dāng)|c|<2時(shí),函數(shù)y=h(x)有9 個(gè)零點(diǎn).
點(diǎn)評(píng):本題考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查函數(shù)的極值,考查函數(shù)的單調(diào)性,考查函數(shù)的零點(diǎn),考查分類討論的數(shù)學(xué)思想,綜合性強(qiáng),難度大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•江蘇一模)已知p:x2-4x-5>0,q:x2-2x+1-m2>0(m>0),若p是q的充分不必要條件,則m的最大值為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•江蘇)在平面直角坐標(biāo)系xOy中,圓C的方程為x2+y2-8x+15=0,若直線y=kx-2上至少存在一點(diǎn),使得以該點(diǎn)為圓心,1為半徑的圓與圓C有公共點(diǎn),則k的最大值是
4
3
4
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•江蘇)設(shè)f(x)是定義在R上且周期為2的函數(shù),在區(qū)間[-1,1]上,f(x)=
ax+1,-1≤x<0 
  
bx+2
x+1
,0≤x≤1
其中a,b∈R.若f(
1
2
)
=f(
3
2
)
,則a+3b的值為
-10
-10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•江蘇一模)選修4-2  矩陣與變換
若點(diǎn)A(2,2)在矩陣M=
cosα-sinα
sinαcosα
對(duì)應(yīng)變換的作用下得到的點(diǎn)為B(-2,2),求矩陣M的逆矩陣.

查看答案和解析>>

同步練習(xí)冊(cè)答案