【題目】已知離心率為的橢圓的左頂點為A,且橢圓E經(jīng)過與坐標(biāo)軸不垂直的直線l與橢圓E交于C,D兩點,且直線AC和直線AD的斜率之積為.
(I)求橢圓E的標(biāo)準(zhǔn)方程;
(Ⅱ)求證:直線l過定點.
【答案】(I);(II)證明見解析.
【解析】
(Ⅰ)根據(jù)離心率,可得的關(guān)系,代入解析式,代入的坐標(biāo),即可求得,進(jìn)而得橢圓的標(biāo)準(zhǔn)方程.
(Ⅱ)設(shè)出直線的方程,將直線方程與橢圓方程聯(lián)立,根據(jù)有兩個不同的交點可知,利用韋達(dá)定理表示出,由直線AC和直線AD的斜率之積為可得關(guān)于和的方程,即可求得和的關(guān)系,代入直線方程即可求得所過定點的坐標(biāo);也可將方程設(shè)為,將直線方程與橢圓方程聯(lián)立,根據(jù)有兩個不同的交點可知,利用韋達(dá)定理表示出,由直線AC和直線AD的斜率之積為可得關(guān)于和的方程,化簡求得的值,即可求得所過定點的坐標(biāo).
(I)
又橢圓E經(jīng)過點
橢圓E的標(biāo)準(zhǔn)方程為
(II)方法一:的方程為,
設(shè),
聯(lián)立方程組,
化簡得,
由解得,
且.
,
,
化簡可得:
或(舍),滿足
直線l的方程為,
直線l經(jīng)過定點
方法二:設(shè)l的方程為,
設(shè),
聯(lián)立方程組,
化簡得,
解得:,
且
,
,
化簡可得:
或者(舍)滿足
直線l經(jīng)過定點.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,判斷函數(shù)的單調(diào)性;
(2)若恒成立,求a的取值范圍;
(3)已知,證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐的底面是邊長為的菱形,,點E是棱BC的中點,,點P在平面ABCD的射影為O,F(xiàn)為棱PA上一點.
1求證:平面平面BCF;
2若平面PDE,,求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,圓的普通方程為.在以坐標(biāo)原點為極點,軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.
(1)寫出圓的參數(shù)方程和直線的直角坐標(biāo)方程;
(2)設(shè)點在上,點Q在上,求的最小值及此時點的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求在點處的切線方程;
(2)若不等式恒成立,求k的取值范圍;
(3)求證:當(dāng)時,不等式成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱錐的四個頂點都在球的表面上,平面,,,,,則:(1)球的表面積為__________;(2)若是的中點,過點作球的截面,則截面面積的最小值是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線,為其焦點,為其準(zhǔn)線,過任作一條直線交拋物線于兩點,、分別為、在上的射影,為的中點,給出下列命題:
(1);(2);(3);
(4)與的交點的軸上;(5)與交于原點.
其中真命題的序號為_________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com