(2013•麗水一模)若函數(shù)f(x)=x3+ax2+bx+c在R上有三個零點,且同時滿足:
①f(1)=0;
②f(x)在x=0處取得極大值;
③f(x)在區(qū)間(0,1)上是減函數(shù).
(Ⅰ)當(dāng)a=-2時,求y=f(x)在點(2,f(2))處的切線方程;
(Ⅱ)若g(x)=1-x,且關(guān)于x的不等式f(x)≥g(x)的解集為[1,+∞),求實數(shù)a的取值范圍.
分析:(Ⅰ)首先由題目給出的條件求出b的值,a的范圍及a和c的關(guān)系,然后把a=-2代入函數(shù)f(x)的解析式,求出函數(shù)在x=2時的導(dǎo)數(shù),利用點斜式求y=f(x)在點(2,f(2))處的切線方程;
(Ⅱ)把c用a表示,化簡不等式f(x)≥g(x),把該不等式恒成立轉(zhuǎn)化為二次不等式恒成立的問題,然后利用“三個二次”的結(jié)合列式求解實數(shù)a的取值范圍.
解答:解:由f(1)=0得:1+a+b+c=0,f'(x)=3x2+2ax+b.
因為f(x)在x=0處取得極大值,所以 f'(0)=0,即b=0.
因為f(x)在區(qū)間(0,1)上是減函數(shù),則f'(1)≤0,所以 3+2a≤0,所以 a≤-
3
2

(Ⅰ) 當(dāng)a=-2時,f'(x)=3x2-4x,所以 f'(2)=4
由a=-2,b=0,1+a+b+c=0,所以 c=1
所以 f(x)=x3-2x2+1,則點(2,f(2))為(2,1),
所以切線方程為:y-1=4(x-2),即y=4x-7.
(Ⅱ) f(x)-g(x)=x3+ax2-1-a-1+x=x3+ax2+x-a-2,f(1)-g(1)=1+a+1-a-2=0
x3+ax2+x-a-2=(x-1)(x2+x+2)+a(x-1)(x+1)
=(x-1)[x2+(1+a)x+(a+2)]

要使f(x)≥g(x)的解集為[1,+∞),必須x2+(1+a)x+(a+2)≥0恒成立
所以,△=(1+a)2-4(a+2)<0(1),或
(1+a)2-4(a+2)≥0
-
1+a
2
≤1
f(1)=2a+4≥0
(2)
解得:(1)得1-2
2
<a<1+2
2
,解(2)得-2≤a≤1-2
2

又∵a≤-
3
2
,∴-2≤a≤-
3
2

所以使不等式f(x)≥g(x)的解集為[1,+∞)的實數(shù)a的取值范圍是[-2,-
3
2
].
點評:本題考查學(xué)生會利用導(dǎo)數(shù)求曲線上過某點切線的方程,會利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間以及根據(jù)函數(shù)的增減性得到函數(shù)的最值.掌握不等式恒成立時所取的條件,考查了數(shù)學(xué)轉(zhuǎn)化思想方法解答(Ⅱ)的關(guān)鍵是把三次不等式恒成立轉(zhuǎn)化為常見的二次不等式恒成立問題,是難題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•麗水一模)某幾何體的三視圖如圖所示,則該幾何體的體積為
108+3π
108+3π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•麗水一模)已知公差不為零的等差數(shù)列{an}的前10項和S10=55,且a2,a4,a8成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若數(shù)列{bn}滿足bn=(-1)nan+2n,求{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•麗水一模)已知拋物線的頂點在坐標(biāo)原點,焦點在y軸上,且過點(2,1),
(Ⅰ)求拋物線的標(biāo)準(zhǔn)方程;
(Ⅱ)與圓x2+(y+1)2=1相切的直線l:y=kx+t交拋物線于不同的兩點M,N,若拋物線上一點C滿足
OC
=λ(
OM
+
ON
)
(λ>0),求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•麗水一模)若正數(shù)a,b滿足2a+b=1,則4a2+b2+
ab
的最大值為
17
16
17
16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•麗水一模)若(x-
1
ax
)7
展開式中含x的項的系數(shù)為280,則a=( 。

查看答案和解析>>

同步練習(xí)冊答案