某公司計(jì)劃2013年在甲、乙兩個(gè)電視臺做總時(shí)間不超過300分鐘的廣告,廣告總費(fèi)用不超過9萬元,甲、乙電視臺的廣告收費(fèi)標(biāo)準(zhǔn)分別為500元/分鐘和200元/分鐘,規(guī)定甲、乙兩個(gè)電視臺為該公司所做的每分鐘廣告能給公司帶來的收益分別為0.3萬元和0.2萬元.問該公司如何分配在甲、乙兩個(gè)電視臺的廣告時(shí)間,才能使公司的收益最大,最大收益是多少萬元?

該公司在甲電視臺做100分鐘廣告,在乙電視臺做200分鐘廣告,公司的收益最大,最大收益是70萬元.

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

某企業(yè)生產(chǎn)A,B兩種產(chǎn)品,生產(chǎn)每噸產(chǎn)品所需的勞動力和煤、電耗如下表:

已知生產(chǎn)每噸A產(chǎn)品的利潤是7萬元,生產(chǎn)每噸B產(chǎn)品的利潤是12萬元,現(xiàn)因條件限制,該企業(yè)僅有勞動力300個(gè),煤360 t,并且供電局只能供電200 kW,試問該企業(yè)生產(chǎn)A,B兩種產(chǎn)品各多少噸,才能獲得最大利潤?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

假設(shè)每天從甲地去乙地的旅客人數(shù)X是服從正態(tài)分布N(800,502)的隨機(jī)變量.記一天中從甲地去乙地的旅客人數(shù)不超過900的概率為p0.
(1)求p0的值;(參考數(shù)據(jù):若X~N(μ,σ2),有P(μ-σ<X≤μ+σ)=0.682 6,P(μ-2σ<X≤μ+2σ)=0.954 4,P(μ-3σ<X≤μ+3σ)=0.997 4)
(2)某客運(yùn)公司用A、B兩種型號的車輛承擔(dān)甲、乙兩地間的長途客運(yùn)業(yè)務(wù),每車每天往返一次.A、B兩種車輛的載客量分別為36人和60人,從甲地去乙地的營運(yùn)成本分別為1 600元/輛和2 400元/輛.公司擬組建一個(gè)不超過21輛車的客運(yùn)車隊(duì),并要求B型車不多于A型車7輛.若每天要以不小于p0的概率運(yùn)完從甲地去乙地的旅客,且使公司從甲地去乙地的營運(yùn)成本最小,那么應(yīng)配備A型車、B型車各多少輛?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某公司承擔(dān)了每天至少搬運(yùn)280噸水泥的任務(wù),已知該公司有6輛A型卡車和8輛B型卡車.又已知A型卡車每天每輛的運(yùn)載量為30噸,成本費(fèi)為0.9千元;B型卡車每天每輛的運(yùn)載量為40噸,成本費(fèi)為1千元.
(1)如果你是公司的經(jīng)理,為使公司所花的成本費(fèi)最小,每天應(yīng)派出A型卡車、B型卡車各多少輛?
(2)在(1)的所求區(qū)域內(nèi),求目標(biāo)函數(shù)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)x,y滿足約束條件,
(1)畫出不等式表示的平面區(qū)域;
(2)若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為4,求a、b滿足的關(guān)系式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

若存在實(shí)數(shù)使成立,則實(shí)數(shù)的取值范圍是(  )..

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知x,y滿足約束條件,則目標(biāo)函數(shù)的最大值為    

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知滿足,則的取值范圍是       

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

“a>1”是“<1”的 (  )

A.充分但不必要條件 B.必要但不充分條件
C.充要條件 D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案