精英家教網 > 高中數學 > 題目詳情

在棱長為2的正方體中,設是棱的中點.

⑴ 求證:
⑵ 求證:平面;
⑶ 求三棱錐的體積.

⑴連接BD,AE. 故,因底面ABCD,故,故平面 ⑵連接,設,連接,則中點,而的中點,則平面 ⑶

解析試題分析:(1)連接BD,AE.  因四邊形ABCD為正方形,故,
底面ABCD,面ABCD,故,又,
平面,平面,故.
⑵. 連接,設,連接,
中點,而的中點,故為三角形的中位線,
,平面平面,故平面.
⑶. 由⑵知,點A到平面的距離等于C到平面的距離,故三棱錐的體積,而,三棱錐的體積為.
考點:線面平行垂直的判定與性質及錐體的體積
點評:要證明線面平行常借助于平面外一直線與平面內一直線平行;線面的垂直關系中常用的思路是線線垂直與線面垂直的互相轉化;第三問求三棱錐體積時采用等體積法的思路轉化底面和頂點,是底面積和高都容易求出

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知斜三棱柱,側面與底面垂直,∠,且,.

(1)試判斷與平面是否垂直,并說明理由;
(2)求側面與底面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,在三棱柱ABC-A1B1C1中, CC1⊥底面ABC,AC=BC,M,N分別是CC1,AB的中點.

(1)求證:CN⊥AB1;
(2)求證:CN//平面AB1M.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,已知平面是正三角形,且.

(1)設是線段的中點,求證:∥平面;
(2)求直線與平面所成角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,在長方體ABCD—A1B1C1D1中,AD=AA1=1,AB=2,E為AB的中點,F為CC1的中點.

(1)證明:B F//平面E CD1
(2)求二面角D1—EC—D的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,四邊形PCBM是直角梯形,,.又,,直線AM與直線PC所成的角為

(1)求證:;
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,△ABC中,ACBCABABED是邊長為1的正方形,EB⊥底面ABC,若G,F分別是EC,BD的中點.
(1)求證:GF底面ABC;
(2)求證:AC⊥平面EBC;

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(理科)如圖分別是正三棱臺ABC-A1B1C1的直觀圖和正視圖,O,O1分別是上下底面的中心,E是BC中點.

(1)求正三棱臺ABC-A1B1C1的體積;
(2)求平面EA1B1與平面A1B1C1的夾角的余弦;
(3) 若P是棱A1C1上一點,求CP+PB1的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,在四棱錐P-ABCD中,PD⊥面ABCD,AD∥BC,CD=13,AB=12,BC=10,AD =12 BC. 點E、F分別是棱PB、邊CD的中點.(1)求證:AB⊥面PAD; (2)求證:EF∥面PAD

查看答案和解析>>

同步練習冊答案