【題目】如圖,四棱錐的底面為平行四邊形,,.
(1)求證:;
(2)求二面角的余弦值.
【答案】(1)見解析(2)
【解析】
取中點(diǎn),連接、,由已知可證,,可得平面,可證。
由已知可得是等腰三角形,分別以、、為、、軸建立空間直角坐標(biāo)系,求出面與面的一個(gè)法向量,由兩法向量所成角的余弦值得二面角的余弦值。
解:(1)取中點(diǎn),連接、.
由,知,,.
又∴平面,
又平面,∴.
(2)法一:由題可得,,故,所以.
所以可以為原點(diǎn),分別以、、為、、軸建立空間直角坐標(biāo)系.
則,,,,
,,,.
設(shè)平面的一個(gè)法向量為,則
即令得.
同理可得平面的一個(gè)法向量為.
∴.
又二面角為銳二面角所以二面角的余弦為.
法二:設(shè)二面角,的大小分別為,,則
,,
∴.
即二面角的余弦為.
而二面角與二面角大小互補(bǔ)、故二面角的余弦為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為直角梯形,,,平面底面,為的中點(diǎn),是棱上的點(diǎn),,,.
(1)求證:平面平面;
(2)若,求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(α)=
(1)化簡(jiǎn)f(α);
(2)若α是第三象限角,且cos(α-)=,求f(α);
(3)若α=-1860°,求f(α).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,射線的普通方程為,曲線的參數(shù)方程為(為參數(shù)).以O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)寫出與的極坐標(biāo)方程;
(2)設(shè)與的交點(diǎn)為P(點(diǎn)P不為極點(diǎn)),與的交點(diǎn)為Q,當(dāng)在上變化時(shí),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】今年入夏以來,我市天氣反復(fù),降雨頻繁.在下圖中統(tǒng)計(jì)了上個(gè)月前15天的氣溫,以及相對(duì)去年同期的氣溫差(今年氣溫-去年氣溫,單位:攝氏度),以下判斷錯(cuò)誤的是()
A.今年每天氣溫都比去年氣溫高B.今年的氣溫的平均值比去年低
C.去年8-11號(hào)氣溫持續(xù)上升D.今年8號(hào)氣溫最低
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓G:x2+y2-x-y=0,經(jīng)過橢圓的右焦點(diǎn)F及上頂點(diǎn)B,過圓外一點(diǎn)(m,0)(m>a)且傾斜角為的直線l交橢圓于C,D兩點(diǎn).
(1)求橢圓的方程;
(2)若右焦點(diǎn)F在以線段CD為直徑的圓E的內(nèi)部,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù),,若函數(shù)有4個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是,曲線的參數(shù)方程為:(為參數(shù)).
(1)求曲線,的直角坐標(biāo)方程;
(2)設(shè)曲線,交于點(diǎn),,已知點(diǎn),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,若此橢圓上存在不同的兩點(diǎn)A,B關(guān)于直線y=4x+m對(duì)稱,則實(shí)數(shù)m的取值范圍是( )
A. B.
C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com