【題目】已知函數(shù)f(x)=4x﹣2x+1+3,當(dāng)x∈[﹣2,1]時(shí),f(x)的最大值為m,最小值為n,
(1)若角α的終邊經(jīng)過(guò)點(diǎn)P(m,n),求sinα+cosα的值;
(2)g(x)=mcos(nx+)+n,求g(x)的最大值及自變量x的取值集合.
【答案】解:(1)∵函數(shù)f(x)=4x﹣2x+1+3=(2x)2﹣22x+3=(2x﹣1)2+2,
當(dāng)x∈[﹣2,1]時(shí),2x∈.
∴當(dāng)2x=1,即x=0時(shí),函數(shù)f(x)取得最小值2,即n=2.
又f(﹣2)=,f(1)=3.
∴f(x)的最大值為3,即m=3,
∴角α的終邊經(jīng)過(guò)點(diǎn)P(3,2),
∴sinα==,cosα=.
∴sinα+cosα=.
(2)g(x)=mcos(nx+)+n=3cos.
當(dāng)2x+=2kπ,解得x=kπ﹣(k∈Z)時(shí),cos取得最大值1,g(x)取得最大值3.
此時(shí)x的取值集合為{x|x=kπ﹣(k∈Z)}.
【解析】(1)利用指數(shù)函數(shù)與二次函數(shù)的單調(diào)性可得m,n,再利用三角函數(shù)的定義即可得出;
(2)利用余弦函數(shù)的單調(diào)性即可得出.
【考點(diǎn)精析】掌握函數(shù)的最值及其幾何意義是解答本題的根本,需要知道利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(。┲担焕脠D象求函數(shù)的最大(小)值;利用函數(shù)單調(diào)性的判斷函數(shù)的最大(小)值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠擬造一座平面為長(zhǎng)方形,面積為的三級(jí)污水處理池.由于地形限制,長(zhǎng)、寬都不能超過(guò),處理池的高度一定.如果池的四周墻壁的造價(jià)為元,中間兩道隔墻的造價(jià)為元,池底的造價(jià)為元,則水池的長(zhǎng)、寬分別為多少米時(shí),污水池的造價(jià)最低?最低造價(jià)為多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】當(dāng)今信息時(shí)代,眾多高中生也配上了手機(jī).某校為研究經(jīng)常使用手機(jī)是否對(duì)學(xué)習(xí)成績(jī)有影響,隨機(jī)抽取高三年級(jí)50名理科生的一次數(shù)學(xué)周練成績(jī),用莖葉圖表示如下圖:
(1)根據(jù)莖葉圖中的數(shù)據(jù)完成下面的列聯(lián)表,并判斷是否有95%的把握認(rèn)為經(jīng)常使用手機(jī)對(duì)學(xué)習(xí)成績(jī)有影響?
及格() | 不及格 | 合計(jì) | |
很少使用手機(jī) | |||
經(jīng)常使用手機(jī) | |||
合計(jì) |
(2)從50人中,選取一名很少使用手機(jī)的同學(xué)記為甲和一名經(jīng)常使用手機(jī)的同學(xué)記為乙,解一道數(shù)列題,甲、乙獨(dú)立解決此題的概率分別為, , ,若,則此二人適合結(jié)為學(xué)習(xí)上互幫互助的“師徒”,記為兩人中解決此題的人數(shù),若,問(wèn)兩人是否適合結(jié)為“師徒”?
參考公式及數(shù)據(jù): ,其中.
0.10 | 0.05 | 0.025 | |
2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓與拋物線共焦點(diǎn),拋物線上的點(diǎn)M到y軸的距離等于,且橢圓與拋物線的交點(diǎn)Q滿足.
(I)求拋物線的方程和橢圓的方程;
(II)過(guò)拋物線上的點(diǎn)作拋物線的切線交橢圓于、 兩點(diǎn),設(shè)線段AB的中點(diǎn)為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,且.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè),求數(shù)列前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在(﹣∞,0)∪(0,+∞)上的奇函數(shù)f(x)滿足f(2)=0,且在(﹣∞,0)上是增函數(shù);又定義行列式=a1a4﹣a2a3; 函數(shù)g(θ)=(其中0≤θ≤).
(1)證明:函數(shù)f(x)在(0,+∞)上也是增函數(shù);
(2)若函數(shù)g(θ)的最大值為4,求m的值;
(3)若記集合M={m|任意的0≤θ≤ , g(θ)>0},N={m|任意的0≤θ≤ , f[g(θ)]<0},求M∩N.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】四棱錐P﹣ABCD的頂點(diǎn)P在底面ABCD上的投影恰好是A,其正視圖與側(cè)視圖都是腰長(zhǎng)為a的等腰直角三角形.則在四棱錐P﹣ABCD的任意兩個(gè)頂點(diǎn)的連線中,互相垂直的異面直線共有 對(duì).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】分別求適合下列條件的標(biāo)準(zhǔn)方程:
(1)實(shí)軸長(zhǎng)為12,離心率為,焦點(diǎn)在x軸上的橢圓;
(2)頂點(diǎn)間的距離為6,漸近線方程為的雙曲線的標(biāo)準(zhǔn)方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)若是函數(shù)的極值點(diǎn),1為函數(shù)的一個(gè)零點(diǎn),求函數(shù)在上的最小值.
(2)當(dāng)時(shí),函數(shù)與軸在內(nèi)有兩個(gè)不同的交點(diǎn),求的取值范圍.(其中是自然對(duì)數(shù)的底數(shù))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com