【題目】如圖,動點P在正方體ABCD﹣A1B1C1D1的對角線BD1上.過點P作垂直于平面BB1D1D的直線,與正方體表面相交于M,N.設(shè)BP=x,MN=y,則函數(shù)y=f(x)的圖象大致是( )
A.
B.
C.
D.
【答案】B
【解析】解:設(shè)正方體的棱長為1,顯然,當P移動到對角線BD1的中點O時,函數(shù) 取得唯一最大值,所以排除A、C;
當P在BO上時,分別過M、N、P作底面的垂線,垂足分別為M1、N1、P1,
則y=MN=M1N1=2BP1=2xcos∠D1BD=2 是一次函數(shù),所以排除D.
故選B.
【考點精析】本題主要考查了空間中直線與直線之間的位置關(guān)系的相關(guān)知識點,需要掌握相交直線:同一平面內(nèi),有且只有一個公共點;平行直線:同一平面內(nèi),沒有公共點;異面直線: 不同在任何一個平面內(nèi),沒有公共點才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知各項均不為0的等差數(shù)列{an}前n項和為Sn , 滿足S4=2a5 , a1a2=a4 , 數(shù)列{bn}滿足bn+1=2bn , b1=2.
(1)求數(shù)列{an},{bn}的通項公式;
(2)設(shè)cn= ,求數(shù)列{cn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sinx﹣xcosx(x≥0).
(1)求函數(shù)f(x)的圖象在 處的切線方程;
(2)若任意x∈[0,+∞),不等式f(x)<ax3恒成立,求實數(shù)a的取值范圍;
(3)設(shè)m=f(x)dx, ,證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個圓心角為直角的扇形AOB 花草房,半徑為1,點P 是花草房弧上一個動點,不含端點,現(xiàn)打算在扇形BOP 內(nèi)種花,PQ⊥OA,垂足為Q,PQ 將扇形AOP 分成左右兩部分,在PQ 左側(cè)部分三角形POQ 為觀賞區(qū),在PQ 右側(cè)部分種草,已知種花的單位面積的造價為3a,種草的單位面積的造價為2a,其中a 為正常數(shù),設(shè)∠AOP=θ,種花的造價與種草的造價的和稱為總造價,不計觀賞區(qū)的造價,設(shè)總造價為f(θ)
(1)求f(θ)關(guān)于θ 的函數(shù)關(guān)系式;
(2)求當θ 為何值時,總造價最小,并求出最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,拋物線y2=2px(p>0)的準線l與x軸交于點M,過M的直線與拋物線交于A,B兩點.設(shè)A(x1 , y1)到準線l的距離為d,且d=λp(λ>0).
(1)若y1=d=1,求拋物線的標準方程;
(2)若 +λ = ,求證:直線AB的斜率為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是半徑為2的半球O的直徑,P,D為球面上的兩點且∠DAB=∠PAB=60°, .
(1)求證:平面PAB⊥平面DAB;
(2)求二面角B﹣AP﹣D的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列選項中,錯誤的是( )
A.若p為真,則¬(¬p)也為真
B.若“p∧q為真”,則“p∨q為真”為真命題
C.x∈R,使得tanx=2017
D.“2x> ”是“l(fā)og x<0”的充分不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形ABCD中,AB⊥AD,AD=DC=1,AB=3,動點P在以點C為圓心,且與直線BD相切的圓內(nèi)運動,設(shè) (α,β∈R),則α+β的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sinx.若存在x1 , x2 , ,xm滿足0≤x1<x2<<xm≤6π,且|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|++|f(xm﹣1)﹣f(xm)|=12(m≥2,m∈N*),則m的最小值為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com