【題目】已知a1=3,an=2an﹣1+(t+1)2n+3m+t(t,m∈R,n≥2,n∈N*)
(1)t=0,m=0時,求證: 是等差數(shù)列;
(2)t=﹣1,m= 是等比數(shù)列;
(3)t=0,m=1時,求數(shù)列{an}的通項公式和前n項和.
【答案】
(1)解:證明:t=0,m=0時,an=2an﹣1+2n,
兩邊同除以2n,可得 = +1,
即有 是首項為 ,公差為1的等差數(shù)列
(2)解:證明:t=﹣1,m= 時,an=2an﹣1+3,
兩邊同加上3,可得an+3=2(an﹣1+3),
即有數(shù)列{an+3}為首項為6,公比為2的等比數(shù)列
(3)解:t=0,m=1時,an=2an﹣1+2n+3,
兩邊同除以2n,可得 = +1+ ,
即為 = =1+ ,
即有得 = +( ﹣ )+( ﹣ )+…+( ﹣ )
= +1+ +1+ +…+1+ ,
=n﹣1+ =n+2﹣ ,
則an=(n+2)2n﹣3,
前n項和Sn=32+422+523+…+(n+2)2n﹣3n,
可令Rn=32+422+523+…+(n+2)2n,
2Rn=322+423+524+…+(n+2)2n+1,
兩式相減可得,﹣Rn=32+22+23+…+2n﹣(n+2)2n+1
=4+ ﹣(n+2)2n+1
=2﹣(n+1)2n+1,
則Rn═(n+1)2n+1﹣2,
Sn=(n+1)2n+1﹣2﹣3n
【解析】(1)兩邊同除以2n , 由等差數(shù)列的定義,即可得證;(2)兩邊同加上3,由等比數(shù)列的定義,即可得證;(3)兩邊同除以2n , 可得 = +1+ ,即為 = =1+ ,再由數(shù)列恒等式,可得數(shù)列{an}的通項公式;再由錯位相減法和等比數(shù)列的求和公式,計算即可得到所求和.
【考點精析】解答此題的關(guān)鍵在于理解數(shù)列的前n項和的相關(guān)知識,掌握數(shù)列{an}的前n項和sn與通項an的關(guān)系,以及對數(shù)列的通項公式的理解,了解如果數(shù)列an的第n項與n之間的關(guān)系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓, 在拋物線上,圓過原點且與的準線相切.
(Ⅰ) 求的方程;
(Ⅱ) 點,點(與不重合)在直線上運動,過點作的兩條切線,切點分別為, .求證: (其中為坐標原點).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點、,動點滿足,設(shè)動點的軌跡為曲線,將曲線上所有點的縱坐標變?yōu)樵瓉淼囊话,橫坐標不變,得到曲線.
(1)求曲線的方程;
(2)是曲線上兩點,且, 為坐標原點,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=4x2+ax+2,不等式f(x)<c的解集為(﹣1,2).
(1)求a的值;
(2)解不等式 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班級有50名學(xué)生,其中有30名男生和20名女生,隨機詢問了該班五名男生和五名女生在某次數(shù)學(xué)測驗中的成績,五名男生的成績分別為86,94,88,92,90,五名女生的成績分別為88,93,93,88,93,下列說法正確的是( )
A.這種抽樣方法是一種分層抽樣
B.這種抽樣方法是一種系統(tǒng)抽樣
C.這五名男生成績的方差大于這五名女生成績的方差
D.該班男生成績的平均數(shù)大于該班女生成績的平均數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),且當x≥0時f(x)= .
(1)求f(x)的解析式;
(2)判斷f(x)的單調(diào)性(不必證明);
(3)若對任意的t∈R,不等式f(k﹣3t2)+f(t2+2t)≤0恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國科研人員屠呦呦法相從青篙中提取物青篙素抗瘧性超強,幾乎達到100%,據(jù)監(jiān)測:服藥后每毫升血液中的含藥量y(微克)與時間r(小時)之間近似滿足如圖所示的曲線
(1)寫出第一服藥后y與t之間的函數(shù)關(guān)系式y(tǒng)=f(x);
(2)據(jù)進一步測定:每毫升血液中含藥量不少于 微克時,治療有效,求服藥一次后治療有效的時間是多長?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:x∈[1,2],x2≥a;命題q:x∈R,x2+2ax+2﹣a=0,若命題p∧q是真命題,則實數(shù)a的取值范圍是( )
A.a≤﹣2或a=1
B.a≤﹣2或1≤a≤2
C.a≥1
D.﹣2≤a≤1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com