【題目】設函數(shù)f(x)=4x2+ax+2,不等式f(x)<c的解集為(﹣1,2).
(1)求a的值;
(2)解不等式

【答案】
(1)解:∵函數(shù)f(x)=4x2+ax+2,不等式f(x)<c的解集為(﹣1,2),

∴﹣1+2=﹣ ,∴a=﹣4


(2)解:不等式轉化為(4x+m)(﹣4x+2)>0,

可得m=﹣2,不等式的解集為

m<﹣2,不等式的解集為{x| };

m>﹣2,不等式的解集為{x|﹣ }


【解析】(1)利用韋達定理,建立方程,即可求a的值;(2)不等式轉化為(4x+m)(﹣4x+2)>0,分類討論,解不等式.
【考點精析】通過靈活運用解一元二次不等式,掌握求一元二次不等式解集的步驟:一化:化二次項前的系數(shù)為正數(shù);二判:判斷對應方程的根;三求:求對應方程的根;四畫:畫出對應函數(shù)的圖象;五解集:根據(jù)圖象寫出不等式的解集;規(guī)律:當二次項系數(shù)為正時,小于取中間,大于取兩邊即可以解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】長沙市物價監(jiān)督部門為調研某公司新開發(fā)上市的一種產品銷售價格的合理性,對某公司的該產品的銷量與價格進行了統(tǒng)計分析,得到如下數(shù)據(jù)和散點圖:

定價

10

20

30

40

50

60

年銷量

1150

643

424

262

165

86

14.1

12.9

12.1

11.1

10.2

8.9

(參考數(shù)據(jù): ,

(1)根據(jù)散點圖判斷, 哪一對具有的線性相關性較強(給出判斷即可,不必說明理由)?

(2)根據(jù)(1)的判斷結果及數(shù)據(jù),建立關于的回歸方程(方程中的系數(shù)均保留兩位有效數(shù)字).

(3)定價為多少元/ 時,年銷售額的預報值最大?

附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知α、β∈(0,π),且tanα、tanβ是方程x2﹣5x+6=0的兩根.
①求α+β的值.
②求cos(α﹣β)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知: 、 、 是同一平面上的三個向量,其中 =(1,2).
(1)若| |=2 ,且 ,求 的坐標.
(2)若| |= ,且 +2 與2 垂直,求 的夾角θ

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點在圓 上,而軸上的投影,且點滿足,設動點的軌跡為曲線.

(1)求曲線的方程;

(2)若是曲線上兩點,且, 為坐標原點,求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知a1=3,an=2an1+(t+1)2n+3m+t(t,m∈R,n≥2,n∈N*
(1)t=0,m=0時,求證: 是等差數(shù)列;
(2)t=﹣1,m= 是等比數(shù)列;
(3)t=0,m=1時,求數(shù)列{an}的通項公式和前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是某社區(qū)工會對當?shù)仄髽I(yè)工人月收入情況進行一次抽樣調查后畫出的頻率分布直方圖,其中第二組月收入在[1.5,2)千元的頻數(shù)為300,則此次抽樣的樣本容量為(

A.1000
B.2000
C.3000
D.4000

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一次測驗共有4個選擇題和2個填空題,每答對一個選擇題得20分,每答對一個填空題得10分,答錯或不答得0分,若某同學答對每個選擇題的概率均為 ,答對每個填空題的概率均為 ,且每個題答對與否互不影響.
(1)求該同學得80分的概率;
(2)若該同學已經(jīng)答對了3個選擇題和1個填空題,記他這次測驗的得分為ξ,求ξ的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 過點, 為橢圓的半焦距,且,過點作兩條互相垂直的直線, 與橢圓分別交于另兩點

(1)求橢圓的方程;

(2)若直線的斜率為,求的面積;

(3)若線段的中點在軸上,求直線的方程.

查看答案和解析>>

同步練習冊答案