已知數列的首項為,對任意的,定義.
(Ⅰ) 若,
(i)求的值和數列的通項公式;
(ii)求數列的前項和;
(Ⅱ)若,且,求數列的前項的和.
(1) ,,
(2) 當為偶數時,;當為奇數時,
【解析】
試題分析:(Ⅰ) 解:(i),, ………………2分
由得
當時,
=………4分
而適合上式,所以.………………5分
(ii)由(i)得: ……………6分
……………7分
…………8分
(Ⅱ)解:因為對任意的有,
所以數列各項的值重復出現,周期為. …………9分
又數列的前6項分別為,且這六個數的和為8. ……………10分
設數列的前項和為,則,
當時,
, ……………11分
當時,
, …………12分
當時
所以,當為偶數時,;當為奇數時,. ……………13分
考點:數列的通項公式,數列的求和
點評:解決的關鍵是對于數列的遞推關系的理解和運用,并能結合裂項法求和,以及分情況討論求和,屬于中檔題。
科目:高中數學 來源: 題型:
5 |
2 |
3an |
4•2n-3n-1•an |
3 |
2 |
查看答案和解析>>
科目:高中數學 來源:2012-2013學年甘肅省天水市高三第三次考試文科數學試卷(解析版) 題型:解答題
(本小題12分)已知數列的首項為,其前項和為,且對任意正整數有:、、成等差數列.
(1)求證:數列成等比數列;
(2)求數列的通項公式.
查看答案和解析>>
科目:高中數學 來源:河北省高三下學期第二次考試數學(文) 題型:解答題
(本小題滿分12分)已知數列的首項為,前項和為,且對任意的,
當時,總是與的等差中項.
(Ⅰ)求數列的通項公式;
(Ⅱ)設,是數列的前項和,,求.
查看答案和解析>>
科目:高中數學 來源: 題型:
(本小題滿分14分)
已知數列的首項為,對任意的,定義.
(Ⅰ) 若,求;
(Ⅱ) 若,且.
(ⅰ)當時,求數列的前項和;
(ⅱ)當時,求證:數列中任意一項的值均不會在該數列中出現無數次.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com