【題目】如圖,四棱錐P﹣ABCD的底面是矩形,PA⊥底面ABCD,PA=AD,點E、F分別為棱AB、PD的中點. (Ⅰ)求證:AF∥平面PCE;
(Ⅱ)AD與平面PCD所成的角的大小.

【答案】解:(Ⅰ)證明:取PC的中點G,連結(jié)FG、EG,
∴FG為△CDP的中位線,
∴FG CD,
∵四邊形ABCD為矩形,E為AB的中點,
∴AE CD,
∴FG AE,
∴四邊形AEGF是平行四邊形,
∴AF∥EG又EG平面PCE,
AF平面PCE,
∴AF∥平面PCE;
(Ⅱ)∵PA⊥底面ABCD,
∴PA⊥AD,PA⊥CD,
又AD⊥CD,PA∩AD=A,
∴CD⊥平面ADP
又AF平面ADP,
∴CD⊥AF
在直角三角形PAD中,PA=AD且F是PD的中點,
∴AF⊥PD,
又CD∩PD=D,
∴AF⊥平面PCD.
∴∠ADP就是AD與平面PCD所成的角.
在直角三角形PAD中,PA=AD,
∴∠PDA=45°
∴AD與平面PCD所成的角是45°.
【解析】(Ⅰ)取PC的中點G,連結(jié)FG、EG,則FG CD,AE CD,因此FG AE,AF∥EG又EG平面PCE,AF平面PCE,AF∥平面PCE;(Ⅱ)PA⊥底面ABCD,可證明CD⊥平面ADP,CD⊥AF,則AF⊥PD,AF⊥平面PCD,∠ADP就是AD與平面PCD所成的角,PA=AD,∠PDA=45°.
【考點精析】掌握直線與平面平行的判定和空間角的異面直線所成的角是解答本題的根本,需要知道平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行;已知為兩異面直線,A,C與B,D分別是上的任意兩點,所成的角為,則

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的參數(shù)方程為(為參數(shù)).在以坐標(biāo)原點為極點,軸的正半軸為極軸的極坐標(biāo)系中,曲線 .

(Ⅰ)求曲線的普通方程和的直角坐標(biāo)方程;

(Ⅱ)若相交于兩點,設(shè)點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)是定義在R上的偶函數(shù),且f(x)在(﹣∞,0]上單調(diào)遞減,則不等式f(lgx)>f(﹣2)的解集是(
A.( ,100)
B.(100,+∞)
C.( ,+∞)
D.(0, )∪(100,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有若干(大于20)件某種自然生長的中藥材,從中隨機(jī)抽取20件,其重量都精確到克,規(guī)定每件中藥材重量不小于15克為優(yōu)質(zhì)品.如圖所示的程序框圖表示統(tǒng)計20個樣本中的優(yōu)質(zhì)品數(shù),其中表示每件藥材的重量,則圖中①,②兩處依次應(yīng)該填的整數(shù)分別是____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)的定義域為[﹣1,2],則函數(shù)g(x)=f(2x﹣ )的定義域為(
A.[ , ]
B.[1, ]
C.[﹣1, ]
D.[﹣1, ]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=xln(x+ (a>0)為偶函數(shù).
(1)求a的值;
(2)求g(x)=ax2+2x+1在區(qū)間[﹣6,3]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某青少年成長關(guān)愛機(jī)構(gòu)為了調(diào)研所在地區(qū)青少年的年齡與身高壯況,隨機(jī)抽取6歲,9歲,12歲,15歲,18歲的青少年身高數(shù)據(jù)各1000個,根據(jù)各年齡段平均身高作出如圖所示的散點圖和回歸直線.根據(jù)圖中數(shù)據(jù),下列對該樣本描述錯誤的是( )

A. 據(jù)樣本數(shù)據(jù)估計,該地區(qū)青少年身高與年齡成正相關(guān)

B. 所抽取數(shù)據(jù)中,5000名青少年平均身高約為

C. 直線的斜率的值近似等于樣本中青少年平均身高每年的增量

D. 從這5種年齡的青少年中各取一人的身高數(shù)據(jù),由這5人的平均年齡和平均身高數(shù)據(jù)作出的點一定在直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】集合A={(x,y)|y=a},集合B={(x,y)|y=bx+1,b>0,b≠1},若集合A∩B≠,則實數(shù)a的取值范圍是(
A.(﹣∞,1)
B.(﹣∞,1]
C.[1,+∞)
D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)= ,當(dāng)點M(x,y)在y=f(x)的圖象上運動時,點N(x﹣2,ny)在函數(shù)y=gn(x)的圖象上運動(n∈N*).
(1)求y=gn(x)的表達(dá)式;
(2)若方程g1(x)=g2(x﹣2+a)有實根,求實數(shù)a的取值范圍;
(3)設(shè) ,函數(shù)F(x)=H1(x)+g1(x)(0<a≤x≤b)的值域為 ,求實數(shù)a,b的值.

查看答案和解析>>

同步練習(xí)冊答案